• Title/Summary/Keyword: antioxidant protein

Search Result 1,590, Processing Time 0.368 seconds

HO-1 Induced by Cilostazol Protects Against TNF-${\alpha}$-associated Cytotoxicity via a PPAR-${\gamma}$-dependent Pathway in Human Endothelial Cells

  • Park, So-Youn;Bae, Jin-Ung;Hong, Ki-Whan;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • A large body of evidence has indicated that induction of endogenous antioxidative proteins seems to be a reasonable strategy for delaying the progression of cell injury. In our previous study, cilostazol was found to increase the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in synovial cells. Thus, the present study was undertaken to examine whether cilostazol is able to counteract tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced cell death in endothelial cells via the induction of HO-1 expression. We exposed human umbilical vein endothelial cells (HUVECs) to TNF-${\alpha}$ (50 ng/ml), with or without cilostazol ($10{\mu}M$). Pretreatment with cilostazol markedly reduced TNF-${\alpha}$-induced viability loss in the HUVECs, which was reversed by zinc protoporphyrine IX (ZnPP), an inhibitor of HO-1. Moreover, cilostazol increased HO-1 protein and mRNA expression. Cilostazol-induced HO-1 induction was markedly attenuated not only by ZnPP but also by copper-protoporphyrin IX (CuPP). In an assay measuring peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$) transcription activity, cilostazol directly increased PPAR-${\gamma}$ transcriptional activity which was completely abolished by HO-1 inhibitor. Furthermore, increased PPAR-${\gamma}$ activity by cilostazol and rosiglitazone was completely abolished in cells transfected with HO-1 siRNA. Taken together, these results indicate that cilostazol up-regulates HO-1 and protects cells against TNF-${\alpha}$-induced endothelial cytotoxicity via a PPAR-${\gamma}$-dependent pathway.

Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant (Phasianus colchicus)

  • Fernye, Csaba;Ancsin, Zsolt;Bocsai, Andrea;Balogh, Krisztian;Mezes, Miklos;Erdelyi, Marta
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.

The Comparison Between Various Solvents Extracts of Mahaenggamsuk-tang on The Anti-oxidative, Anti-inflammatory and Neuro-protective Effects (마행감석탕 용매별 추출물의 항산화, 항염증 및 뇌세포보호 효과 비교)

  • Lee, Hwan;Han, Yu-Bin;Ko, Wonmin;Kim, Nayeon;Kim, Jungyoung;Lee, Dong-Sung;Woo, Eun-Rhan
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.3
    • /
    • pp.163-170
    • /
    • 2020
  • Mahaenggamsuk-tang (MHGS) has been widely used in Korea and China for the treatment of various diseases. MHGS was constituted the Ephedrea Herba, Armenicae Semen, Glycyrrhizae Radix and Gypsum Fibrosum. In this study, we have made three different solvents extract as MHGS water extract (MHGS-W), MHGS 50% EtOH extract (MHGS-50E), and MHGS 100% EtOH extract (MHGS-100E). The MHGS-W, MHGS-50E and MHGS-100E showed the discernible difference patterns on HPLC analysis. Furthermore, MHGS-50E and MHGS-100E significantly increased the DPPH and ABTS radical scavenging effects than MHGS-W. In addition, the MHGS-50E and MHGS-100E also inhibited significantly nitric oxide (NO) and prostaglandin E2 (PGE2) production, and inducible nitric oxide synthase (iNOS) cyclooxygenase-2 (COX-2) protein expression in RAW264.7. On the other hand, MHGS-50E and MHGS-W showed remarkable protection on the HT22 cell via heme oxygenase (HO)-1, but MHGS-100E did not show. The results of this study proved that MHGS-50E has greater potential therapeutic uses by exerting antioxidant, anti-inflammatory and neuroprotective effects compared to MHGS-100E, MHGS-W. Our study suggests that the different solvent might be affected the biological activities when make the traditional herbal medicines including MHGS.

Quality Characteristics of Dried Noodle Prepared with Strawberry Powder (딸기분말을 첨가한 국수의 품질 특성)

  • Park, Bock-Hee;Koh, Kyeong-Mi;Cha, Min-hye;Kim, Ok-Joo;Jeon, Eun-Raye
    • Journal of the Korean Society of Food Culture
    • /
    • v.31 no.1
    • /
    • pp.88-95
    • /
    • 2016
  • This study evaluated the quality characteristics of dried noodles prepared with strawberry powder in order to determine the most preferred noodle recipe for children's school meals. The proximate composition of strawberry powder used was as follows: moisture, 3.39%; crude protein, 1.53%; crude lipid, 0.97%; crude ash, 0.82%; and carbohydrates, 93.29%. When viscosity of the composite strawberry powder-wheat flours was measured by amylograph. Gelatinization point, maximum viscosity, viscosity at $95^{\circ}C$ and viscosity at $95^{\circ}C$ after 15 min decreased as the level of strawberry powder increased. As the level of strawberry powder increased, both L and b color values decreased, whereas a value increased. Weight, water absorption and volume of cooked noodles decreased, whereas turbidity of soup increased. For textural properties, addition of strawberry powder to cooked noodles reduced hardness, chewiness and brittleness. Overall preference according to the results of the sensory evaluation, noodles added with 6% strawberry powder were the most preferred. According to the results, the addition of strawberry powder can positively affect the overall sensory evaluation of dried noodles, and 6% is the optimal level for addition.

Quality Characteristics and Antioxidative Activities of Guavapyun Added Korean Guava Fruit Extract (한국산 구아바 열매 추출물을 첨가한 구아바편의 품질특성 및 항산화활성)

  • Kim, Min-Ju;Choi, Hae-Yeon;Kim, Sun-Im
    • Korean journal of food and cookery science
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2010
  • This study was conducted to investigate the quality characteristics of guavapyun after the addition of different ratios of extract (0.25, 0.5, 0.75, 1.0%), non-extract and vitamin C. The quality if the pyun containing 0.5% of the guava fruit extract (guavapyun) and vitamin C was higher compared with the quality of the control pyun. In the results of the proximatecomposition, the content of water was high in the control pyun relative to the vitamin C pyun and guavapyun and the carbohydrate, ash, crude lipid and protein content was high in guavapyun. The sweetness, pH and color (L, a, b value) were very high in the samples. The texture, hardness, chewiness and gumminess were significantly high in the control pyun and the adhesiveness and cohesiveness were high in guavapyun. However, there were no significant differences in springiness between the control and the added samples. The total phenolic content was higher in guavapyun (23.57 mg GAE/100 g) than the control pyun (18 mg GAE/100 g) and vitamin C pyun(15.05 mg GAE/100 g). The antioxidant activities determined by the DPPH method and ABTS method was higher in guavapyun (41.37 mM TE/g, 15.35 mM TE/g) than the control pyun (4.43 mM TE/g, 2.17mM TE/g) and vitamin C pyun (11.33 mM TE/g, 4.51 mM TE/g). Using the FRAP method, guavapyun(9.06 mM TE/g) was shown to exhibit a stronger ferrous ion chelating activity than the control pyun (4.49mM TE/g) and vitamin C pyun (7.03 mM TE/g). Thus, the studied indigenous guavapyun was high in both antioxidative activity and total phenolic content.

Diosmetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury through Activating the Nrf2 Pathway and Inhibiting the NLRP3 Inflammasome

  • Liu, Qinmei;Ci, Xinxin;Wen, Zhongmei;Peng, Liping
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common clinical syndrome of diffuse lung inflammation with high mortality rates and limited therapeutic methods. Diosmetin, an active component from Chinese herbs, has long been noticed because of its antioxidant and anti-inflammatory activities. The aim of this study was to evaluate the effects of diosmetin on LPS-induced ALI model and unveil the possible mechanisms. Our results revealed that pretreatment with diosmetin effectively alleviated lung histopathological changes, which were further evaluated by lung injury scores. Diosmetin also decreased lung wet/dry ratios, as well as total protein levels, inflammatory cell infiltration and proinflammatory cytokine (eg. $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6) overproduction in bronchoalveolar lavage fluid (BALF). Additionally, increased MPO, MDA and ROS levels induced by LPS were also markly suppressed by diosmetin. Furthermore, diosmetin significantly increased the expression of Nrf2 along with its target gene HO-1 and blocked the activation of NLRP3 inflammasome in the lung tissues, which might be central to the protective effects of diosmetin. Further supporting these results, in vitro experiments also showed that diosmetin activated Nrf2 and HO-1, as well as inhibited the NLRP3 inflammasome in both RAW264.7 and A549 cells. The present study highlights the protective effects of diosmetin on LPS-induced ALI via activation of Nrf2 and inhibition of NLRP3 inflammasome, bringing up the hope of its application as a therapeutic drug towards LPS-induced ALI.

Potential and Future Directions of Effect Assessment of Polluted Sediment Using Sediment Elutriates: Effects on Growth and Molecular Biomarkers on Marine Copepod (퇴적물 용출수를 이용한 오염 퇴적물의 생물영향평가 가능성과 방향: 요각류 유생의 성장 및 분자생체지표의 활용)

  • Won, Eun Ji;Gang, Yehui
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • Several bioassays have been performed for assessment of the impact of polluted sediments. The direct exposure method using sediments is limited by difficulty controlling feeding and its effects on organisms. Furthermore, only macro-organisms and benthic organisms are used. To evaluate the potential application of sediment elutriate as a complementary strategy for impact assessment, copepods, small organisms with a short life cycle, were exposed to sediment elutriates, and several end-points were measured. As a result, sediment elutriates prepared from polluted sites caused growth retardation in marine copepods. In terms of molecular biomarkers, antioxidant-related and chaperone protein gene expression levels were increased in a dose- and time-dependent manner. Thus, we suggest that sediment elutriate tests can provide an effective alternative for toxicity assessment using whole sediment samples. Further studies are required to obtain sufficient data for future applications.

Zizyphus jujube-based Edible Film Development by the Depolymerization Processes (고분자 분쇄 공정을 이용한 대추 소재 가식성 필름 개발)

  • Lee, Hahn-Bit;Yang, Hee-Jae;Ahn, Jun-Bae;Lee, Youn-Suk;Min, Sea-C.
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.321-328
    • /
    • 2011
  • Edible films were developed from jujube (Zizyphus jujube Miller) using depolymerization processes of ultrasound and high-pressure homogenization. A 4.6% (w/w) jujube hydrocolloid was treated by ultrasound (600W, 20 min) or homogenized at high pressure (172 MPa, 6 s) and mixed with whey protein isolate, glycerol, xanthan, and sucrose esters of fatty acids to form film-forming solutions from which films were formed by drying. The film prepared by highpressure homogenization (HPH film) produced more homogeneous films without particles than those prepared without depolymerization or with the ultrasound treatment. HPH films possessed the highest tensile strength (4.7MPa), the lowest water vapor permeability ($2.9g{\cdot}mm/kPa{\cdot}h{\cdot}m^2$), and the most uniform and dense microstructures among the films. Flavor profiles of jujube powder and the films were distinguishable. Heat seal strength and oxygen permeability of the HPH films were 44.4 N/m and $0.025mL{\cdot}{\mu}m/m^2$/day/Pa, respectively. Antioxidant activities of jujube power and HPH films were not significantly different.

Proteomic Analysis of the Increased Proteins in Peroxiredoxin II Deficient RBCs

  • Yang, Hee-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.55-64
    • /
    • 2012
  • Peroxiredoxin II (Prdx II; a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Prdx II has been reported to protect a wide range of cellular environments as antioxidant enzyme, and its dysfunctions may be implicated in a variety of disease states associated with oxidative stress, including cancer and aging-associated pathologies. But, the precise mechanism is still obscure in various aspects of aging containing ovarian aging. Identification and relative quantification of the increased proteins affected by Prdx II deficiency may help identify novel signaling mechanisms that are important for oxidative stress-related diseases. To identify the increased proteins in Prdx $II^{-/-}$ mice, we performed RBC comparative proteome analysis in membrane fraction and cytosolic fractions by nano-UPLC-$MS^E$ shotgun proteomics. We found the increased 86 proteins in membrane (32 proteins) and cytosolic (54 proteins) fractions, and analyzed comparative expression pattern in healthy RBCs of Prdx $II^{+/+}$ mice, healthy RBCs of Prdx $II^{-/-}$ mice, and abnormal RBCs of Prdx $II^{-/-}$ mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cellular morphology and assembly, cell-cell interaction, metabolism, and stress-induced signaling. Moreover, protein networks among the increased proteins were analyzed to associate with various diseases. Taken together, RBC proteome may provide clues to understand the clue about redox-imbalanced diseases.

Effect of Ethanol on $Na^+-P_i$ Uptake in Opossum Kidney Cells: Role of Membrane Fluidization and Reactive Oxygen Species

  • Park, In-Ho;Hwang, Moon-Young;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.529-538
    • /
    • 1999
  • This study was undertaken to examine the effect of ethanol on $Na^+ -dependent$ phosphate $(Na^+-P_i)$ uptake in opossum kidney (OK) cells, an established renal proximal tubular cell line. Ethanol inhibited ^Na^+-dependent$ component of phosphate uptake in a dose-dependent manner with $I_{50}$ of 8.4%, but it did not affect $Na^+-independent$ component. Similarly, ethanol inhibited $Na^+-dependent$ uptakes of glucose and amino acids (AIB, glycine, alanine, and leucine). Microsomal $Na^+-K^+-ATPase$ activity was not significantly altered when cells were treated with 8% ethanol. Kinetic analysis showed that ethanol increased $K_m$ without a change in $V_{max}$ of $Na^+-P_i$ uptake. Inhibitory effect of n-alcohols on $Na^+-P_i$ uptake was dependent on the length of the hydrocarbon chain, and it resulted from the binding of one molecule of alcohol, as indicated by the Hill coefficient (n) of 0.8-1.04. Catalase significantly prevented the inhibition, but superoxide dismutase and hydroxyl radical scavengers did not alter the ethanol effect. A potent antioxidant DPPD and iron chelators did not prevent the inhibition. Pyrazole, an inhibitor of alcohol dehydrogenase, did not attenuate ethanol-induced inhibition of $Na^+-P_i$ uptake, but it prevented ethanol-induced cell death. These results suggest that ethanol may inhibit $Na^+-P_i$ uptake through a direct action on the carrier protein, although the transport system is affected by alterations in the lipid environment of the membrane.

  • PDF