• Title/Summary/Keyword: antioxidant peptides

Search Result 84, Processing Time 0.026 seconds

Potential Antioxidant Peptides in Rice Wine

  • Rhee, Sook-Jong;Lee, Chung-Yung J.;Kim, Mi-Ryung;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.715-721
    • /
    • 2004
  • Many food protein hydrolysates have been shown to have antioxidant activities, and recent research focuses on low molecular peptides produced during hydrolysis of food protein. Korean rice wine contains about 60-70% of protein at dry base and originates from raw materials. It has been suggested that the protein is transformed into low molecular weight peptides, and have antioxidant activity during fermentation. The objectives of this study were to evaluate the antioxidant activity of the pre-purified and purified peptides found in Korean rice wine and to identify the responsible peptides. The wine extract of Samhaeju, a traditional Korean rice wine made by low temperature fermentation, was evaporated at $35^{\circ}C$. The two methods employed in the evaluation of antioxidant activity were the DPPH radical scavenging method and the beta-carotene bleaching test. The pre-purified samples showed 808 AAC (Antioxidant Activity Coefficient) and 56.5% AOA (Antioxidant Activity), which were higher than $\alpha$-tocopherol (572 AAC and 78% AOA). The rice wine extract was separated by reversed-phase HPLC. The protective effect of the four most antioxidant active fractions were tested for t-butyl hydroperoxide induced oxidation of healthy human erythrocytes and the byproduct was determined by malondialdehyde formation. Fraction No.5 showed 35% lower MDA concentration as compared to the control. The peptides were further purified using consecutive chromatographic methods and 4 antioxidant peptides were isolated. The amino acid sequences of the peptides were identified as Ile-His-His, Val- Val-His(Asn), Leu-Val-Pro, and Leu(Val)-Lys-Arg-Pro. The AAC value of the synthetic form of the identified peptides was the highest for Ile-His-His.

Preparation and Characterization of Antioxidant Peptides from Fermented Goat Placenta

  • Hou, Yinchen;Zhou, Jiejing;Liu, Wangwang;Cheng, Yongxia;Wu, Li;Yang, Gongming
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.769-776
    • /
    • 2014
  • The goat placenta was fermented by Bacillus subtilis and the optimal fermentation parameters of strongest antioxidant capacity of peptides were obtained using response surface methodology (RSM). The effects of fermentation time, initial pH value and glucose content on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity of the goat peptides were well fitted to a quadric equation with high determination coefficients. According to the data analysis of design expert, the strongest DPPH radical scavenging capacity value was obtained with the following conditions: content of glucose was 2.23%, initial pH value was 7.00 and fermentation time was 32.15 h. The DPPH radical scavenging capacity commonly referring antioxidant activity showed a concentration dependency and increased with increasing peptide concentration. The effects of temperature and pH were assessed to determine the stability of antioxidant peptides prepared from goat placenta. Antioxidant peptides showed good stabilities when temperature was lower than $70^{\circ}C$. However, the antioxidant peptides lost antioxidant activities rapidly under alkaline and excessive acid condition. Ultrafiltration technique was performed to separate fermentation broth with different Mw (molecular weight). It was found that peptides in the range of < 3 KDa mainly accounted for the antioxidant activities.

Effect of Dietary Supplementation of Bioactive Peptides on Antioxidant Potential of Broiler Breast Meat and Physicochemical Characteristics of Nuggets

  • Aslam, Sadia;Shukat, Rizwan;Khan, Muhammad Issa;Shahid, Muhammad
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.55-73
    • /
    • 2020
  • Poultry meat is generally exposed to quality deterioration due to lipid oxidation during storage. Oxidative stability of meat can be increased by feed supplementation. Aim of the current study was to investigate the effect of dietary supplementation of fish waste derived bioactive peptides on antioxidant potential of broiler breast meat and physico-chemical characteristics and quality parameters of nuggets prepared from breast meat. 180 broiler birds (six groups of 30 birds) were purchased. Each group was given different concentrations of bioactive peptides i.e. 0, 50, 100, 150, 200, and 250 mg/kg feed. After completion of six weeks birds were slaughtered and breast meat was stored at -18℃ for six months. Nuggets were prepared and stored at -18℃ for 45 days. Meat samples were analyzed for antioxidant activity [total phenolic contents (TPC), DPPH· scavenging activity, and ferric reducing antioxidant power] and lipid oxidation assay at regular intervals of 1, 2, 3, 4, 5, and 6 months while nuggets were analyzed for quality (pH, color, texture and water holding capacity) parameters after regular interval of 15 days. A significant (p<0.05) effect of feed supplementation was observed on antioxidant status such as TPC, DPPH· scavenging activity, and FRAP of broiler breast meat. Dietary interventions of bioactive peptides significantly (p<0.05) delayed lipid oxidation of breast meat than control. All the quality parameters were also significantly affected due to dietary bioactive peptides and storage duration. Thus, dietary interventions of bioactive peptides can increase the antioxidant and shelf stability of broiler breast meat and nuggets.

Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review

  • Jae Won Jeong;Seung Yun Lee;Da Young Lee;Jae Hyeon Kim;Seung Hyeon Yun;Juhyun Lee;Ermie Jr. Mariano;Sung Sil Moon;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.533-550
    • /
    • 2024
  • Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.

Biological activity of peptides purified from fish skin hydrolysates

  • Abuine, Racheal;Rathnayake, Anuruddhika Udayangani;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.10.1-10.14
    • /
    • 2019
  • Fish skin waste accounts for part of the solid waste generated from seafood processing. Utilization of fish skin by bioconversion into high-grade products would potentially reduce pollution and economic cost associated with treating fish processing waste. Fish skin is an abundant supply of gelatin and collagen which can be hydrolyzed to produce bioactive peptides of 2-20 amino acid sequences. Bioactivity of peptides purified from fish skin includes a range of activities such as antihypertensive, anti-oxidative, antimicrobial, neuroprotection, antihyperglycemic, and anti-aging. Fish skin acts as a physical barrier and chemical barrier through antimicrobial peptide innate immune action and other functional peptides. Small peptides have been demonstrated to possess biological activities which are based on their amino acid composition and sequence. Fish skin-derived peptides contain a high content of hydrophobic amino acids which contribute to the antioxidant and angiotensin-converting enzyme inhibitory activity. The peptide-specific composition and sequence discussed in this review can be potentially utilized in the development of pharmaceutical and nutraceutical products.

Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells

  • Zhao, Xiao;Cui, Ya-Juan;Bai, Sha-Sha;Yang, Zhi-Jie;Cai, Miao;Megrous, Sarah;Aziz, Tariq;Sarwar, Abid;Li, Dong;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1163-1174
    • /
    • 2021
  • Casein-derived antioxidant peptides by using microbial proteases have gained increasing attention. Combination of two microbial proteases, Protin SD-NY10 and Protease A "Amano" 2SD, was employed to hydrolyze casein to obtain potential antioxidant peptides that were identified by LC-MS/MS, chemically synthesized and characterized in a oxidatively damaged HepG2 cell model. Four peptides, YQLD, FSDIPNPIGSEN, FSDIPNPIGSE, YFYP were found to possess high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability. Evaluation with HepG2 cells showed that the 4 peptides at low concentrations (< 1.0 mg/ml) protected the cells against oxidative damage. The 4 peptides exhibited different levels of antioxidant activity by stimulating mRNA and protein expression of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as nuclear factor erythroid-2-related factor 2 (Nrf2), but decreasing the mRNA expression of Kelch-like ECH-associated protein 1 (Keap1). Furthermore, these peptides decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), but increased glutathione (GSH) production in HepG2 cells. Therefore, the 4 casein-derived peptides obtained by using microbial proteases exhibited different antioxidant activity by activating the Keap1-Nrf2 signaling pathway, and they could serve as potential antioxidant agents in functional foods or pharmaceutic preparation.

Purification and Characterization of Antioxidant Peptides from Lotus Nelumbo nucifera Seed Protein (연자육(Lotus Nelumbo nucifera Seed) 단백질로부터 항산화 펩타이드 분리 정제 및 특성)

  • Chathuri K. Marasinghe;Hyun-Woo Kim;Won-Kyo Jung;Jae-Young Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Lotus Nelumbo nucifera seed protein (LSP) was isolated by alkaline solubilization after removing fat and phenolics by hexane and ethanol treatment. Antioxidant peptides from LSP were produced with Alcalase® and pepsin and hydroxyl radical scavenging activities were determined. LSP-Alcalase® hydrolysates showed higher hydroxyl radical scavenging activity than LSP-pepsin hydrolysates. To purify antioxidant peptides, LSP-Alcalase® hydrolysates were subjected to high performance liquid chromatography (HPLC) separation on the C18 column and the active fraction was further purified using a SuperdexTM peptide 10/300 GL column. Finally, the active fraction (F8-2) was evaluated for antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical scavenging, and oxygen radical absorbance capacity (ORAC) assays. The EC50 values of the F8-2 were 105.81±0.02 ㎍/mL for DPPH and 32.26±0.02 ㎍/mL for hydroxyl radical and the F8-2 exhibited 7.22 μM trolox equivalent (TE)/100 ㎍ F8-2. Glutathione (GSH), which is a positive control, showed EC50 values of 19.87±0.01 ㎍/mL for DPPH and 15.95±0.03 ㎍/mL for hydroxyl radical and an ORAC value of 14.17±0.03 μM TE/100 ㎍ GSH. Finally, sixteen peptides were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among them, Ile-Tyr and Leu-Tyr showed higher antioxidant scores.

Evaluation of Antioxidant Activities of Peptides Isolated from Korean Fermented Soybean Paste, Chungkukjang

  • Kim, Sun-Lim;Chi, Hee-Youn;Kim, Jung-Tae;Hur, On-Sook;Kim, Deog-Su;Suh, Sae-Jung;Kim, Hyun-Bok;Cheong, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.349-360
    • /
    • 2011
  • The objectives of present study were to characterize the peptides which were isolated from Korean fermented soybean paste, chungkukjang, and to determine their antioxidant activities. Four fractions were collected from the methanol extract of chungkukjang by using a recycling preparative HPLC. Among fractions, Fr-2 was identified to be highly potent free radical scavenging activity in the assay of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and nitroblue tetrazolium(NBT)-reduction inhibition. Base on antioxidant effects, fraction Fr-2 was employed for the refraction with a prep-column and separated into five fractions of which two fractions were identified to have higher antioxidant activity. To confirm the amino acid constituents of antioxidant fractions Fr-2-2 and Fr-2-3 were analyzed, and eight kinds of amino acids such as aspartic acid, threonine, serine, glutamic acid, glycine, lysine, histidine, and arginine were identified as the constituent amino acids. Antioxidant activities of the separated peptides were further assessed cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl terazolium bromide (MTT), and fluorescence-activated cell sorting (FACS) analysis of H4IIE cells treated with hydrogen peroxide (H2O2). Chungkukjang peptides have shown their ability to protect H4IIE rat hepatoma cells against H2O2- induced oxidative stress by concentration and time-dependent manner. Therefore, These results indicated that fermented soybean paste chungkukjang will be promoted the antioxidant and radical scavenging activities, and beneficial for health. The antioxidant peptide fractions Fr-2-2 and Fr-2-3 were denominated as P-NICS-1 and P-NICS-2, respectively. However, further studies were required to clarify their amino acid sequences and molecular properties, and physiological significances.

Characterization of antioxidative peptide purified from black eelpout (Lycodes diapterus) hydrolysate

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.10
    • /
    • pp.22.1-22.7
    • /
    • 2019
  • The functional peptides from protein hydrolysates of various fishery sources have been identified such as antioxidant activity. The main intention of this study was purification and characterization of antioxidative peptide from black eelpout muscle. The antioxidative peptides were purified from black eelpout (Lycodes diapterus) muscle using different proteases. Antioxidant activity of black eelpout hydrolysates was evaluated using DPPH radical scavenging activity. Among six hydrolysates, the pepsin hydrolysate had the highest antioxidant activity compared to the other hydrolysates. Therefore, it was further purified and a peptide with seven amino acid residues of DLVKVEA (784 Da) was identified by amino acid sequence analysis. The EC50 value for scavenging DPPH radicals by purified peptide was 688.77 μM. Additionally, the purified peptide exhibited protective effect against DNA damage induces by oxidation in mouse macrophages (RAW 264.7 cells). The results of this study suggest that black eelpout muscle protein hydrolysate could potentially contribute to development of bioactive peptides in basic research.

Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain

  • Ha, Go Eun;Chang, Oun Ki;Han, Gi Sung;Ham, Jun Sang;Park, Beom-Young;Jeong, Seok-Geun
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.360-369
    • /
    • 2015
  • Milk proteins have many potential sequences within their primary structure, each with a specific biological activity. In this study, we compared and investigated the bioactivities of hydrolysates of the domestic (A, B) and imported (C, D) skim milk powders generated using papain digestion. MALDI-TOF analysis revealed that all milk powder proteins were intact, indicating no autolysis. Electrophoretic analysis of hydrolysates showed papain treatment caused degradation of milk proteins into peptides of various size. The antioxidant activity of the hydrolysates, determined using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and total phenolic contents (TPC) assays, increased with incubation times. In all skim milk powders, the antioxidant activities of hydrolysates were highest following 24 h papain treatment (TPC: A, 196.48 μM GE/L; B, 194.52 μM GE/L; C, 194.76 μM GE/L; D, 163.75 μM GE/L; ABTS: A, 75%; B, 72%; C, 72%; D, 57%). The number of peptide derived from skim milk powders, as determined by LC-MS/MS, was 308 for A, 283 for B, 208 for C, and 135 for D. Hydrolysate A had the highest antioxidant activity and the most potential antioxidant peptides amongst the four skim milk powder hydrolysates. A total of 4 β-lactoglobulin, 4 αs1-casein, and 56 β-casein peptide fragments were identified as potential antioxidant peptides in hydrolysate A by LC-MS/MS. These results suggest that domestic skim milk could have applications in various industries, i.e., in the development of functional foods.