• Title/Summary/Keyword: antioxidant action

Search Result 345, Processing Time 0.021 seconds

Fatty acid analysis and regulatory effects of citron (Citrus junos Sieb. ex TANAKA) seed oil on nitric oxide production, lipid accumulation, and leptin secretion (유자씨유의 지방산분석 및 Nitric Oxide 생성, 지방축적능, 렙틴분비 조절효과)

  • Kim, Tae Woo;Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.4
    • /
    • pp.221-228
    • /
    • 2014
  • Purpose: Citron seed oil (CSO) has been reported to have high antioxidant activity. However, the composition and other biologically activities of CSO have not been reported. In this study, we confirmed the fatty acid composition of CSO, which may be beneficial to vascular disease and obesity. Methods: We investigated the oil composition of CSO using gas chromatography coupled with mass spectrometry (GC-MS) analysis, and cytotoxicity was confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) was measured using Griess reagent, and lipid accumulation and leptin secretion in 3T3-L1 cells were measured by Oil-Red O staining and commercial ELISA kit, respectively. Results: GC-MS analysis indicated that CSO contains several components, including linoleic acid, oleic acid, palmitic acid, stearic acid, linolenic acid, palmitoleic acid, and arachidic acid. In physiological activity analysis, CSO did not induce cytotoxic effects in HUVECs and 3T3-L1 cells. Further, CSO significantly induced nitric oxide and leptin secretion as well as inhibited lipid accumulation. Conclusion: CSO increased NO release, inhibited lipid accumulation, and induced leptin secretion, suggesting it may be useful for the management of vessels and weight gain. Although further studies are required to investigate the safety and mechanism of action of CSO, our results show that the composition and physiological activity of CSO are sufficient for its use as functional edible oil.

Effects of Seomaeyakssuk (Artemisia argyi H.) Vinegar on Lipid Metabolism in Rats Fed a High-Fat and High-Cholesterol Diet (섬애약쑥 식초가 고지방-고콜레스테롤 급이 흰쥐의 체내 지질대사에 미치는 영향)

  • Shin, Jeong Yeon;Kang, Jae Ran;Shin, Jung Hye;Seo, Weon Taek;Byun, Hee Uk;Choi, Jin Sang;Kang, Min Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.779-789
    • /
    • 2017
  • The effects of orally administered Seomaeyakssuk (Artemisia argyi H.) vinegar on lipid metabolism in Sprague-Dawley rats fed a high-fat and high-cholesterol (HFC) diet were analyzed. The experimental animals were divided into five groups: a normal diet group (normal, N), HFC diet group (control, C), HFC diet with lovastatin at 20 mg/kg body weight (B.W.) group (positive control, PC), HFC diet with malt vinegar group (TM), and HFC diet with Seomaeyaksuk vinegar group (TS) (2 mL/kg B.W.). After 4 weeks of feeding rats the experimental diet, contents of serum total lipids and total cholesterol levels of TM and TS groups were significantly lower than those of the PC group. Triglyceride contents of the TM and TS groups were not significantly different from those of the PC group but significantly lower than those of the C group. Content of serum high density lipoprotein-cholesterol was significantly lower than that of the N group but higher than that of the C group. Low density lipoprotein-cholesterol content of serum was 190.68 mg/dL in the TS group, which was the lowest except for the N group. Aspartate transaminase and albumin transaminase activities as a measurement of liver damage index were not significantly different between the TM, TS, and C groups. Serum thiobarbituric acid reactive substance content of the TS group was reduced to a similar level as the N group but was lower than that of the C group in the liver and significantly higher than that of the N group. Antioxidant activity of the TS group was 55.69% in serum, which was a similar to that of the N group, and was 52.39% in the liver, which was not significantly different than that of the C group. From these results, we conclude that Seomaeyakssuk vinegar improves serum lipid content as a result of the complex action of vinegar, an active ingredient of Seomaeyakssuk and a product of the fermentation process.

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.

Induction of Apoptosis in HT-29 Human Colorectal Cancer by Aloin (인간 대장암 세포 HT-29에서 Aloin에 의한 Apoptosis 유도)

  • Yoo, Eun-Seon;Woo, Joong-Seok;Kim, Sung-Hyun;Lee, Jae-Han;Han, So-Hee;Jung, Soo-Hyun;Park, Young-Seok;Kim, Byeong-Soo;Kim, Sang-Ki;Park, Byung-Kwon;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.495-501
    • /
    • 2019
  • Aloin [1,8-Dihydroxy-10-(${\beta}$-D-glucopyranosyl)-3-(hydroxymethyl)-9(10H)-anthracenone], is a natural anthraquinone from aloe. It has been shown to have antioxidant and anticancer effects in various types of human cancer cells, but the anticancer effects of aloin in human colorectal cancer cells HT-29 have not been elucidated. In this study, possible mechanisms by which aloin exerts its apoptotic action in cultured human colorectal cancer HT-29 cells were investigated. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that treatment with aloin (0, 100, 200, 300 and $400{\mu}M$) reduced cell viability in a concentration-dependent manner in HT-29 and showed no effects on cell proliferation in A375SM and AGS cells. In addition, it was confirmed that apoptotic body was significantly increased as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, and increased apoptosis rate by flow cytometry in HT-29 cells treated with aloin (0, 200 and $400{\mu}M$). We confirmed by western blotting that aloin activated Bax (pro-apoptotic), cleaved-poly (ADP-ribose) polymerase (PARP) and caspase-3, -8 and Bcl-2 (anti-apoptotic) were not changed compared with the control. Aloin induced up-regulation of phospho-p38 and down-regulation of phospho-extracellular signal-regulated kinase (ERK)1/2. Therefore, aloin suppressed the growth inhibitory effects by the induction of apoptosis in human colorectal cancer cells and has potential as a cancer preventive medicine.

Evaluation of Sprouted Barley as a Nutritive Feed Additive for Protaetia brevitarsis and Its Antibacterial Action against Serratia marcescens (흰점박이꽃무지 사료첨가제로서 새싹보리의 곤충병원성 세균에 대한 항균 효과에 관한 연구)

  • Song, Myung Ha;Kim, Nang-Hee;Park, Kwan-Ho;Kim, Eunsun;Kim, Yongsoon
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2021
  • Interest in edible insects such as Protaetia brevitarsis has increased rapidly, and several insect producers use these insects in industrialized mass production. However, mass rearing of insects can cause insect diseases. Sprouted barley is a valuable source of nutrients and has antioxidant, antimicrobial, anti-inflammatory, and anti-cancer effects. This study was conducted to investigate the effect of sprouted barley as a feed additive for producing healthy P. brevitarsis larvae. P. brevitarsis larvae were fed feeds with or without sprouted barley, and their body weight and larval period wewe checked weekly. To confirm the antibacterial effects of sprouted barley, in vitro bioassays were performed by counting Serratia marcescens colonies, and in vivo bioassays were performed by determining the survival rate and body weights of the S. marcescens-infected larvae. Larvae fed different feeds were analyzed for their nutrient compositions (i.e., such as proximate composition, minerals, amino acids, and heavy metals). Larvae fed 5% and 10% sprouted barley had maximum weight increases of 19.2% and 23.1%, respectively. Both treatment groups had significantly shorter larval periods than those of the control group. Sprouted barley markedly inhibited the growth of entomopathogenic S. marcescens. Furthermore, larvae fed sprouted barley exhibited higher Cu, Zn, and K levels. Seventeen amino acids were present in larvae fed sprouted barley, of which, tyrosine and glutamic acid were predominant. No heavy metals were detected in any of the investigated groups. Therefore, sprouted barley may be a suitable feed additive for producing high-quality P. brevitarsis larvae.