• Title/Summary/Keyword: antimicrobial potential

Search Result 669, Processing Time 0.033 seconds

Biological And Antimicrobial Activity of Portulaca oleracea (Portulaca oleracea의 생리활성과 항균활성)

  • Cho, Young-Je;Ju, In-Sik;Kwon, Oh-Jun;Chun, Sung-Sook;An, Bong-Jeun;Kim, Jeung-Hoan
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.49-54
    • /
    • 2008
  • The concentration of total phenolic compounds of the water extracts and 80% ethanol extracts form Portulaca oleracea were 3.05 ${\mu}g/ml$ and 6.33 ${\mu}g/ml$, respectively. The total antioxidant activities of water extracts and 80% ethanol extracts of Portulaca oleracea were 89.2% and 72.9% in DPPH assay, 69.0% and 96.5% in ABTS assay, antioxidant protection factor of the water and 80% ethanol extracts were each 2.73 PF and 3.63 PF. Tyrosinase inhibitory activities were water extracts and 80% ethanol extracts of Portulaca oleracea were 20.2% and 38.7%. Portulaca oleracea showed high antimicrobial activites against Helicobater pylori, Staphylococcus epidermidis, Staphylococcus aureus, Eschericia coli and Streptococcus mutans. Minimum inhibitory concentrations (MICs) on Helicobacter pylori, Staphylococcus epidermidis, Staphylococcus aureus, Escheichia coli and Streptococcus mutans were 200, 50, 100, 100 and 150 ${\mu}g/ml$, respectively. The result suggest that Portulaca oleracea extracts may be useful as potential source as antioxidant and antimicrobials.

Anti-inflammatory activities of fermented Rhus verniciflua stem bark extract and its growth inhibitory effect on Helicobacter pylori (발효옻 추출물의 헬리코박터파이로리 생장억제 및 항염증 활성)

  • Choi, Eun Yeong;Suk, Ki Tae;Choi, Han Seok;Kim, Myung Kon;Kwon, Yong Soo;Kim, Myong Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.502-507
    • /
    • 2016
  • This study was designed to investigate the beneficial effects of fermented Rhus verniciflua stem bark extract (RVSBE) on the stomach. We evaluated RVSBE for its antimicrobial activity against Helicobacter pylori (H. pylori), along with its ability to reduce the viability of human gastric cancer AGS cells. In addition, its anti-inflammatory effect was examined by evaluating nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 mRNA expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. RVSBE showed antimicrobial activity, as 2.0 mg of the extract produced a clear inhibition zone of 4.0 mm. RVSBE inhibited the growth of AGS cells by 20% at concentrations ranging from 0.25-1.0 mg/mL. Regarding the anti-inflammatory effects of RVSBE, at 0.1-1.0 mg/mL, the extract showed more than 75% inhibition of NO production. In addition, cells treated with 0.25 mg/mL RVSBE showed a 25% decrease in iNOS mRNA levels compared to those in the LPS-treated cells. These results suggest that RVSBE may have significant inhibitory effects on inflammatory mediators, and therefore, may be a potential anti-inflammatory candidate.

Prevalence and Antimicrobial Resistance of Enterococus faecalis and Enterococcus faecium Isolated from Beef, Pork, Chicken and Sashimi (시판 축산물 및 수산물에서 Enterococcus faecalis와 Enterococcus faecium 분포 및 항생제 감수성에 관한 연구)

  • Sung, Chang-Hyun;Chon, Jung-Whan;Kwak, Hyo-Sun;Kim, Hyunsook;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.133-138
    • /
    • 2013
  • In this study, a total of 256 samples of retail raw meats (beef, pork and chicken) and sashimi were investigated for the presence of Enterococcus faecalis and Enterococcus faecium. We isolated a total of 117 E. faecalis and E. faecium from the samples, with contamination rates ranging from 18.8% for sashimi samples to 68.8% of chicken samples. E. faecalis was the predominant species recovered from all of the retail raw meats beef (42.2%), pork (42.2%), chicken (65.6%) and sashimi (12.5%). Among 117 isolates, 61 isolates (52.1%) were resistant to tetracycline, 32 isolates (27.4%) were resistant to erythromycin, 23 isolates (19.7%) were resistant to chloramphenicol, 16 isolates (13.7%) were resistant to ripampin, 10 isolates (8.5%) were resistant to gentamycin, 9 isolates (7.7%) were resistant to ciprofloxacin and 1 isolate (0.9%) was resistant to ampicillin and penicillin G. No resistance to amoxicillin + clavulanic acid and vancomycin was observed. Although no strain was resistant to vancomycin, the vanB gene was observed in 9 of 117 of Enterococcus (7.7%) demonstrating potential risk of vancomycin-resistant Enterococcus (VRE). Our results indicate that E. faecalis and E. faecium were highly prevalent in retail raw meats, but most strains were sensitive to tested antibiotics.

Evaluation of biological activity for Dangyuja (Citrus grandis) leaves and investigation of optimal concentrations extracted by alternative ethanol concentrations (에탄올 농도별 당유자 잎의 최적추출조건 및 생리활성 평가)

  • Nakamura, Masaya;Ra, Jong-Hwan;Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • TheCitrus grandis Osbeck is a special product in the Jeju island. The product has been as a remedy for liver damage and hang over. This study demonstrates how to investigate and compare the antioxidant, phenol content, tyrosinase and ${\alpha}$-glucosidase inhibitory activity, antimicrobial, and alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity with the C. grandis leaves extracted in different ethanol concentrations. From the yield, a 20% ethanol extract demonstrated the highest results among the other extracts. The distilled water extract showed the most abundant in a total phenol content and highest ABTS radical scavenging activity and reducing power assay. In the DPPH radical scavenging activity, ${\alpha}$-glucosidase and tyrosinase inhibitory assay (used ${\text\tiny{L}}$-tyrosine as substrate), the 80% ethanol extract exhibited a higher value than other extracts. The 60% ethanol extract showed prominent activities in the tyrosinase inhibitory (used ${\text\tiny{L}}$-dopa as substrate), ADH and ALDH activity assay. In the minimum inhibitory concentration (MIC) assay, 60% and 80% ethanol extracts inhibited the bacterial growth almost similarly. Moreover, the gram-positive bacteria was more restrained than the gram-negative bacteria. The resultsrevealed that the distilled water and 80% ethanol extract showed a relatively higher antioxidant activity compared to other extracts. The 60 ~ 80% ethanol extracts demonstrated potential tyrosinase, ${\alpha}$-glucosidase inhibitory, antimicrobial, ADH and ALDH activities. Therefore, the C. grandis is suggested to be considered as a functional material for various proposes.

Biosynthesis of Compound K, a biologically active saponin of ginseng(Panax ginseng) by bioconversion (인삼(Panax ginseng)으로부터 생물전환을 이용한 생리활성물질인 Compound K의 생합성)

  • Kim, MooSung;Kim, Ja-i;Jung, Kyung-Hwan;Yu, Kwang-Won;Moon, Gi-Seong;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1335-1344
    • /
    • 2021
  • Ginsenoside Compound K is a triterpene saponin found in the leafs, stems and roots of Panax ginseng. This study aimed to prepare a valuable ginsenoside Compound K using ginseng extracts with the enzyme(Plantase). Plantase showed very efficient activity to produce Compound K from ginseng extracts. Plantase exhibited the highest activity at pH 5 and 50 ℃, as a result of investigating the yield of Compound K by changing the temperature and pH, while fixing the enzyme concentration to 10% or 15% over 48 hours of reaction time. Under optimium conditions, Plantase produced and accumulated Compound K over 35 wt% of whole ginseng extracts. Antimicrobial activitiy of bioconvertied ginseng extracts showed selectivity against Cutibacterium acnes KCTC 3314. Minimal inhibitory concentration (MIC) of bioconverted ginseng extract (35% of Compound K enriched extract) against Cutibacterium acnes KCTC 3314 strain is 31.25ug/mL. These results suggest that the Compound K enriched extract is potential materials for cosmetic products and Plantase is a very useful enzyme for Compound K production.

Antibacterial Effect of Sinhyowoldosan Against Methicillin-Resistant Staphylococcus aureus (신효월도산(神效越桃散)이 메티실린에 내성이 있는 Staphylococcus aureus에 대한 항균활성에 관한 연구)

  • Shin, In-Sik;Kang, Ok-Hwa;Joung, Dae-Ki;Kang, Hee-Jung;Kim, Ji-Eun;Hwang, Hyeong-Chil;Kim, In-Won;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Objectives : Methicillin-Resistant Staphylococcus aureus (MRSA) is a cephalosporin and beta-lactam antibiotic-resistant strains. In most cases, that is spread from infected patients and infection rates are growing increasingly. Thus, accordingly, increased resistance to antibiotics is causing serious problems in the world. Therefore, there is a need to develop alternative antimicrobial drugs for the treatment of infections diseases. Methods : The antibacterial activities of Sinhyowoldosan were evaluated against 3 strains of Methicillin-resistant staphylococcus aureus(MRSA) and 1 standard Methicillin-susceptible S. aureus (MSSA) strain by using the disc diffusion method, minimal inhibitory concentrations (MICs) assay, colorimetric assay using MTT test, checkerboard dilution test and time-kill assay was performed under dark. Results : The MIC (minimum inhibitory concentration) of Sinhyowoldosan water extract against S. aureus strains ranged from 500 to 2,000 ${\mu}g/mL$, so we have confirmed it on a strong antibacterial effect. Also, the combinations of Sinhyowoldosan water extract and conventional antibiotics exhibited improved inhibition of MRSA with synergy effect. We suggest that Sinhyowoldosan water extract against MRSA have antibacterial activity, it has potential as alternatives to antibiotic agent. the combination test was used, Triton X-100 (TX) and DCCD for measurement of membrane permeability and inhibitor of ATPase. As a result, antimicrobial activity of SH is affected by the cell membrane were assessed. Conclusion : We suggest that the Sinhyowoldosan water extract lead the treatment of bacterial infection to solve the resistance and remaining side-effect problems that are the major weak points of traditional antibiotics.

Volatile Components of Essential Oils from Spices and It's Inhibitory Effects against Biofilm Formed by Food Poisoning Bacteria (향신료 정유의 휘발성 성분 및 식중독 세균에 의해 형성된 biofilm 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • The ability of volatile components of essential oils (EO) from cinnamon, clove, and lemongrass to inhibit biofilms formed on polyethylene and stainless steel by six types of food poisoning bacteria was investigated. The main components of cinnamon EO were identified as cinnamaldehyde (38.30%), linalool (9.61%), β-caryophyllene (8.90%), and 1,3,4-eugenol (8.19%). 1,3,4-Eugenol (61.84%) was the dominant component of clove EO. The major component of lemongrass EO was citral. Citral is a natural mixture of two isomeric acyclic monoterpene aldehydes: geranial (trans-citral, 19.11%) and neral (cis-citral, 19.23%). Among these major compounds, cinnamaldehyde, linalool, eugenol, and citral exhibited comparatively strong antimicrobial activity in the disc diffusion assay. Treatments with 0.1% eugenol and citral were highly effective on biofilm inhibition on both tested surfaces. Cinnamaldehyde (0.1%) was effective against biofilm formation by Listeria monocytogenes ATCC 19112 and Staphylococcus aureus KCCM 11812. These results suggested the potential of cinnamaldehyde, eugenol, and citral treatments in inhibiting the formation of biofilms by food poisoning bacteria.

Classification of Critically Important Antimicrobials and their Use in Food Safety (중요 항생제의 분류와 식품안전분야에서 활용)

  • Hyo-Sun Kwak;Jun-Hyeok Ham;Eiseul Kim;Yinhua Cai;Sang-Hee Jeong;Hae-Yeong Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.193-201
    • /
    • 2023
  • Antimicrobials in human medicine are classified by The World Health Organization (WHO) into three groups: critically important antimicrobials (CIA), highly important antimicrobials (HIA), and important antimicrobials (IA). CIA are antibiotic classes that satisfy two main criteria: that they are the sole or the only available limited therapeutic option to effectively treat severe bacterial infections in humans (Criterion 1), and infections where bacteria are transmitted to humans from non-human sources or have the potential to acquire resistance genes from non-human sources (Criterion 2). WHO emphasizes the need for cautious and responsible use of the CIA to mitigate risk and safeguard human health. Specific antimicrobials within the CIA with a high priority for management are reclassified as "highest priority critically important antimicrobials (HP-CIA)" and include the 3rd generation of cephalosporins and the next generation of macrolides, quinolones, glycopeptides, and polymyxins. The CIA list is the scientific basis for risk assessment and risk management policies that warrant using antimicrobials to reduce antimicrobial resistance in several countries. In addition, the CIA list ensures food safety in the food industry, including for the popular food chain companies McDonald's and KFC. The continuous update of the CIA list reflects the advancement in research and emerging future challenges. Thus, active and deliberate evaluation of antimicrobial resistance and the construction of a list that reflects the specific circumstances of a country are essential to safeguarding food security.

Detection of microbial organisms on Apis mellifera L. beehives in palm garden, Eastern Thailand

  • Sirikwan Dokuta;Sumed Yadoung;Peerapong Jeeno;Sayamon Hongjaisee;Phadungkiat Khamnoi;Khanchai Danmek;Jakkrawut Maitip;Bajaree Chuttong;Surat Hongsibsong
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Background: Honey bees play a crucial role in pollination and ecological balance. Apis mellifera L. colonies, especially those located in specific geographic regions, such as the palm garden in Eastern Thailand, are susceptible to potential threats from microbial contaminants. Understanding and detecting microbial organisms in these beehives is essential for the preservation of bee health, honey production, and the broader ecosystem. However, the problem of microbial infection and antibiotic-resistant bacteria is more severe and continuously increasing, resulting in a health, economic, and social crisis. The purpose of this study is to determine the prevalence of microorganisms in A. mellifera beehives in palm gardens in Rayong province, Eastern Thailand. Results: Ten swabs in transport media were swabbed and obtained from different parts of each beehive (1 swab per beehive), for a total of 10 hives. Traditional microbial culture-based methods, biochemical tests, and antimicrobial susceptibility (disc-diffusion) tests were used to detect microbial organisms and antibiotic resistance in bacteria. The swab tests from nine beehives resulted in the detection of Gram-positive bacteria (63.64%), Gram-negative bacteria (27.27%), and fungi/yeast (9.09%). These microorganisms are classified as a group of coagulase-negative Staphylococcus spp. and made up 40.91% of the bacteria discovered. Other bacteria found were Coryneform bacteria (13.64%), Pantoea spp. (13.64%), Bacillus spp. (9.09%), yeast (9.09%), glucose non-fermentative Gram-negative bacilli (9.09%), and Pseudomonas spp. (4.55%). However, due to the traditional culture-based and 0biochemical tests usually used to identify the microbial organisms in clinical specimens and the limitation of identifying some environmental microbial species, the results of the antimicrobial susceptibility test cannot reveal if the organism is resistant or susceptible to the drug. Nevertheless, drug-sensitive inhibition zones were formed with each antibiotic agent. Conclusions: Overall, the study supports prevention, healthcare, and public health systems. The contamination of microorganisms in the beehives may affect the quality of honey and other bee products or even the health of the beekeeper. To avoid this kind of contamination, it is therefore necessary to wear personal protective equipment while harvesting honey and other bee products.

Antibacterial Properties of Poly-butylene Adipate Terephthalate With Zinc Pyrithione Composites (Zinc pyrithione을 함유한 poly-butylene adipate terephthalate 복합체의 항균 특성)

  • Tae-gyeun Kim;Woo-Suk Jung;Daesuk Bang;Kwang-Hwan Jhee
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.540-547
    • /
    • 2024
  • The continuous use of polymer materials has exacerbated waste and environmental challenges, spurring a growing interest in eco-friendly polymers, especially biodegradable polymers. These polymers are gaining attention for their potential as antimicrobial agents, particularly in fields like food packaging a need further underscored by the recent COVID-19 pandemic. This study focuses on the development of an antibacterial polymer by combining poly-butylene adipate terephthalate (PBAT) with zinc pyrithione (ZnPt). The antibacterial properties were assessed through turbidity analysis, the shaking flask method, and the film adhesion method. The antibacterial activities of the composites with varying ZnPt% (w/w) contents (0, 0.1, 0.3, and 0.5) were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results revealed that even at a low concentration of 0.1% (w/w), the composites demonstrated significant antibacterial activity against both Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). Composites with ZnPt concentrations of 0.3% (w/w) or higher achieved over 99.999% antibacterial efficacy. Field emission scanning electron microscopy (FE-SEM) analysis of the fracture surfaces of the composites confirmed the uniform distribution of ZnPt particles, ranging from 1-4 ㎛. Further FE-SEM analysis of bacterial suspensions exposed to the composite surfaces showed clear evidence of cell wall destruction in both E. coli and S. aureus. As an antimicrobial biodegradable polymer, PBAT-ZnPt composites show great promise for applications in various sectors, including food packaging.