• 제목/요약/키워드: antimicrobial potential

검색결과 653건 처리시간 0.021초

감마선 조사가 오미자의 생리 활성과 색상 변화에 미치는 영향 (Effects of Gamma-Irradiation on Biological Activities and Color Changes of Extracts of Schizandrae fructus)

  • 전태욱;박지혜;신명곤;김기혁;변명우
    • 한국식품영양과학회지
    • /
    • 제32권1호
    • /
    • pp.137-142
    • /
    • 2003
  • 오미자 추출물을 감마선 조사하여 색택 개선, 항산화성, 항균성에 대하여 실험하였다. 오미자의 추출 방법은 열수추출, ethanol, methanol 그리고 acetone으로 추출하였으며, 감마선 조사는 10, 20 그리고 30 kGy로 하였다. 감마선 조사 선량이 증가할수록 명도(Hunter color L-value)의 경우 비조사구보다 조사구가 월등히 밝은 색을 보였으며, 적색도(a값)와 황색도(b값)는 감소하는 결과를 보여줬다. TBA가 분석 결과는 ethanol로 추출한 경우 가장 높은 항산화력을 확인하였다. 전자 공여능의 측정 결과는 열수 추출한 경우에 비조사구와 조사구 모두 가장 활성이 높았으며 ethanol과 methanol의 경우에는 비조사구와 비슷한 활성을 보여줬다. 오미자 추출 용매별 및 감마선 조사 선량에 따른 항균효과는 B. subtilis, B. natto, B. megaterium, S. aureus, Sal, typhymurium과 E. coli 등 모든 균주에 대해 아주 높은 항균 활성을 나타내었다. 또한 오미자 추출물은 30 kGy까지 감마선을 조사하여도 추출물의 생리 활성에는 영향을 미치지 않았다 따라서 감마선 조사 기술은 천연 식품 보존제 및 화장품 원료로서 사용하기 위한 오미자 추출물의 색택 개선에 활용 가능성이 높을 것으로 기대된다.

Synthesis of Novel Benzofuran and Related Benzimidazole Derivatives for Evaluation of In Vitro Anti-HIV-1, Anticancer and Antimicrobial Activities

  • Rida, Samia M.;El-Hawash, Soad A.M.;Fahmy, Hesham T.Y.;Hazzaa, Aly A.;El-Meligy, Mostafa M.M.
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.826-833
    • /
    • 2006
  • Previously, we synthesized and evaluated several benzofuran derivatives containing heterocyclic ring substituents linked to the benzofuran nucleus at C-2 by a two- to four-atom spacer as potential anti-HIV-1, anticancer and antimicrobial agents. Among these derivatives, NSC 725612 and NSC 725716 exhibited interesting anti-HIV-1 activity. To further investigate the structure-activity relationship, we synthesized several new benzofuran derivatives derived from 2-acetylbenzofuran (2, 3a-c) and 2-bromoacetylbenzofuran (6; 7a,b; 8a,b). The compounds were designed to comprise the heterocyclic substituents directly linked to the benzofuran nucleus at C-2. Moreover, various related benzimidazoles derived from 2-acetylbenzimidazole and from 2-cyanomethylbenzimidazole (12a,b; 13a,b; 15; 16a,b) were also prepared as isosteres. The synthesized compounds were preliminarily evaluated for their in vitro anti-HIV-1, anticancer and antimicrobial activity. Compounds 2, 3a, 3b, and 12b showed weak anti-HIV-1 activity. Compound 6 exhibited mild activity against S. aureus, while compound 15 had mild activity towards S. aureus and C. albicans. However, no significant anticancer activity was observed with any of the tested compounds. From these results, we conclude that the presence of the spacer between the heterocyclic substituent and the benzofuran nucleus may be essential for the biological activity.

Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species

  • Ogaki, Mayara Baptistucci;Rocha, Katia Real;Terra, Marcia Regina;Furlaneto, Marcia Cristina;Furlaneto-Maia, Luciana
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1026-1034
    • /
    • 2016
  • In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene+ strains") were screened for antimicrobial activity. A total of 82.5% of the Gene+ strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum

  • Wan-Mohtar, Wan Abd Al Qadr Imad;Young, Louise;Abbott, Grainne M.;Clements, Carol;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.999-1010
    • /
    • 2016
  • Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.

A Novel Anti-Microbial Peptide from Pseudomonas, REDLK Induced Growth Inhibition of Leishmania tarentolae Promastigote in Vitro

  • Yu, Yanhui;Zhao, Panpan;Cao, Lili;Gong, Pengtao;Yuan, Shuxian;Yao, Xinhua;Guo, Yanbing;Dong, Hang;Jiang, Weina
    • Parasites, Hosts and Diseases
    • /
    • 제58권2호
    • /
    • pp.173-179
    • /
    • 2020
  • Leishmaniasis is a prevalent cause of death and animal morbidity in underdeveloped countries of endemic area. However, there is few vaccine and effective drugs. Antimicrobial peptides are involved in the innate immune response in many organisms and are being developed as novel drugs against parasitic infections. In the present study, we synthesized a 5-amino acid peptide REDLK, which mutated the C-terminus of Pseudomonas exotoxin, to identify its effect on the Leishmania tarentolae. Promastigotes were incubated with different concentration of REDLK peptide, and the viability of parasite was assessed using MTT and Trypan blue dye. Morphologic damage of Leishmania was analyzed by light and electron microscopy. Cellular apoptosis was observed using the annexin V-FITC/PI apoptosis detection kit, mitochondrial membrane potential assay kit and flow cytometry. Our results showed that Leishmania tarentolae was susceptible to REDLK in a dose-dependent manner, disrupt the surface membrane integrity and caused parasite apoptosis. In our study, we demonstrated the leishmanicidal activity of an antimicrobial peptide REDLK from Pseudomonas aeruginosa against Leishmania tarentolae in vitro and present a foundation for further research of anti-leishmanial drugs.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • 한국축산식품학회지
    • /
    • 제39권5호
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).

Antibacterial effects of two cecropin type peptides isolated from the silkworm against Salmonella species

  • Kim, Seong Ryul;Park, Jong Woo;Kim, Seong-Wan;Kim, Su Bae;Jo, You-Young;Kim, Kee Young;Choi, Kwang-Ho;Ji, Sang Deok;Kim, Jong gil;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제37권2호
    • /
    • pp.95-99
    • /
    • 2018
  • In insect defense system, antimicrobial peptides (AMPs) are one of important biological molecules to survive in a variety of environments. Insect can synthesize AMPs to protect against invading pathogens in humoral immune response. Taking more advantage of biological antimicrobial molecules, we report antibacterial activity of two cecropin type peptides, cecropin and moricin, isolated from the silkworm against four salmonella species. In this work, we purified antimicrobial candidate peptides (AMCP) from the extracts of immune challenged silkworm larval hemolymph by two-step chromatographic purification procedure, cation exchange and gel permeation chromatography. The molecular weights of purified peptides were estimated to be about 4 ~ 5 kDa by Tricin SDS-PAGE analysis, and identified as silkworm cecropin and moricin by NCBI BLAST homology search with their N-terminal amino acid sequences. As antibacterial activity assay, the purified peptides showed stronger antibacterial activity against Salmonella pathogens with an MIC value of $1{\sim}4{\mu}g/mL$. Therefore two cecropin type peptides purified from the silkworm will be valuable potential materials for development of new natural antibiotics.

Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B

  • Anwar, Ayaz;Siddiqui, Ruqaiyyah;Shah, Muhammad Raza;Khan, Naveed Ahmed
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.171-177
    • /
    • 2019
  • Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these gold-conjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.

Feasibility of sodium long chain polyphosphate as a potential growth promoter in broilers

  • Moon, Seung-Gyu;Kothari, Damini;Kim, Woong-Lae;Lee, Woo-Do;Kim, Kyung-Il;Kim, Jong-Il;Kim, Eun-Jib;Kim, Soo-Ki
    • Journal of Animal Science and Technology
    • /
    • 제63권6호
    • /
    • pp.1286-1300
    • /
    • 2021
  • The objective of this study was to evaluate in vitro antimicrobial and anti-biofilm activity of sodium long chain polyphosphate (SLCPP) and effect of dietary supplementation of SLCPP on growth performance, organ characteristics, blood metabolites, and intestinal microflora of broilers. Antimicrobial activities of SLCPP were observed against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica ser. Pullorum, Shigella sonnei, Klebsiella pneumonia, Pseudomonas aeruginosa in agar well diffusion assay. In addition, SLCPP demonstrated good anti-biofilm activity against K. pneumonia and P. aeruginosa. Furthermore, to investigate the dietary effect of SLCPP, a total of 480 1-day-old male Ross 308 broiler chicks were randomly allotted to three dietary treatment groups (4 replicates per group, 40 birds in each replicate): an antibiotic-free corn-soybean meal basal diet (NC); basal diet + enramycin 0.01% (PC); and basal diet + 0.1% SLCPP (SPP). The experiment lasted for 35 days. Results showed that birds fed with SLCPP had higher body weight (BW) and average daily gain (ADG), and lower feed conversion ratio (FCR) during the grower phase (days 7 to 21) (p < 0.05). Except for blood urea nitrogen, all other blood biochemical parameters remained unaffected by the dietary supplementation of SLCPP. Compared to the control group, lengths of the duodenum and ileum in the SPP group were significantly shorter (p < 0.05). Moreover, counts of lactic acid bacteria (LAB), total aerobes, and Streptococcus spp. in jejunum as well as LAB in cecum were increased in the SPP group than in the PC group (p < 0.05). These results suggest that dietary supplementation of SLCPP might promote the growth of broilers in their early growth phase.

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • 제24권6호
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.