• Title/Summary/Keyword: antimicrobial gas

Search Result 101, Processing Time 0.02 seconds

Fundamental Investigation of Functional Property of Concrete Mixed with Functional Materials

  • Lee, Jong-Chan;Lee, Moon-Hwan;Lee, Sae-Hyun;Park, Young-Sin;Park, Jae-Myung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.165-171
    • /
    • 2006
  • Environment-friendly materials are increasingly used as building construction materials nowadays, and the market share of those is growing. Accordingly, the research and developments in terms of environmental value are progressing steadily now. The main characteristics of environmental products are far-infrared radiation, negative-ion emission, electromagnetic wave shielding, and antimicrobial property. These products are often used in mortar and as spray on the finishing material. Nevertheless, there are hardly any research on the functional properties of concrete, the main material in construction field. Thus, we evaluated such basic properties of concrete as slump, compressive strength and air content while using such functional materials as sericite, wood-pattern sandstone, carbon black and nano-metric silver solution to focus on their functional properties like far-infrared radiation, negative ion emission, electro magnetic wave shielding, and antimicrobial activity in this research. The results indicated that the most useful material in the functional materials was carbon black. Sericite and nano-metric silver solution had a little effect on the functional property. Moreover, although wood-pattern sandstone had very high functional property, it exhibited too low compressive strength to be applied, to concrete as a factory product. Antimicrobial property of nano-metric silver solution in the concrete was not clear demonstrated, but if these specimens were to be aged in $CO_2$ gas for a long time, it might be apparent.

Antimicrobial resistance and pulsed-field gel electrophoresis (PFGE) patterns of Salmonella Gallinarum isolated from chicken (닭에서 분리한 Salmonella Gallinarum의 약제내성 및 PFGE 양상)

  • Bae, Jong-Chul;Kim, Seong-Guk;Kim, Young-Hoan;Jo, Min-Hee;Lee, Young-Ju;Park, Cheong-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • Fowl typhoid (FT) is a septicemic disease caused by Salmonella Gallinarum. The purpose of this study was to investigate the antimicrobial resistance and pulsed-field gel electrophoresis (PFGE) patterns of S. Gallinarum isolated from chicken. During 1999 to 2004, there was isolated a total of 100 strains in liver and spleen. The biochemical characteristics of S. Gallinarum isolates was nonmotile, no production of H$_2$S, glucose gas, non-fermented rhamnose, indole-negative, fermentation of dulcitol, mannitol, maltose, and ornithine decarboxylase. At antimicrobial susceptibility, all of isolates were susceptible to amoxicillin/clavulanic acid, amikacin, neomycin, kanamycin, norfloxacin and enrofloxacin. One hundred isolates were divided into 54 resistant patterns and 37 strains was 6-multi drug resistance. PFGE of Xba I restriction fragments of S. Gallinarum isolates was 20 patterns.

Chemical and Antimicrobial Properties of Essential Oils from Three Coniferous Trees Abies koreana, Cryptomeria japonica, and Torreya nucifera

  • Oh, Hyun-Jeong;Ahn, Hyo-Min;So, Kyoung-Ha;Kim, Sang-Suk;Yun, Pil-Yong;Jeon, Gyeong-Lyong;Riu, Key-Zung
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.164-169
    • /
    • 2007
  • Three coniferous essential oils were extracted from Abies koreana, Cryptomeria japonica, and Torreya nucifera by hydrodistillation. The chemical composition of each oil was analyzed by GCMS, and their antimicrobial activities were tested against two bacteria and one yeast strains. Fortyseven compounds were identified from A. koreana oil, 39 from C. japonica, and 59 from T. nucifera. Main components of the essential oils were limonene (23.5%), bornyl acetate (17.9%), ${\alpha}-pinene$ (11.1%), and camphene (10.2%) in A. koreana, kaurene (26.3%), ${\gamma}-eudesmol$ (19.0%), elemol (6.9%), and sabinene (5.1%) in C. japonica, limonene (13.5%), ${\delta}-cadinene$ (10.5%), ${\alpha}-bisabolol$ (10.2%), and ${\alpha}-copaene$ (7.7%) in T. nucifera. Among the three coniferous trees tested, the essential oils of A. koreana exhibited higher and broader antimicrobial activity against the tested organisms than those of C. japonica and T. nucifera.

Phytochemical and Biological Investigation of Spergularia marina (L.) Griseb. Growing in Egypt

  • El-Dien, Omnia Gamal;Shawky, Eman;Aly, Amal H.;Abdallah, Rokia M.;Abdel-Salam, Nabil A.
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.152-159
    • /
    • 2014
  • A phytochemical investigation of Spergularia marina (L.) Griseb. growing in Egypt, has been carried out, which resulted in the isolation of seven compounds from the different extracts of the plant namely; ${\beta}$-sitosterol glucoside, tricin (1) dihydroferulic acid (2), vanillic acid (3), 4-hydroxybenzoic acid (4), uracil (5) and 8-hydroxy cuminoic acid (6) Structure elucidation of the isolated compounds was carried out using different spectroscopic techniques. This is the first report for the isolation of these compounds from genus Spergularia. Furthermore, 8-Hydroxy cuminoic acid and uracil were isolated for the first time from family Caryophyllaceae. The chemical composition of the volatile components present in the petroleum ether extract of Spergularia marina (L.) Griseb. using combined gas chromatography-mass spectrometry (GC-MS) is reported here for the first time. Of the 97 components present, 59 were identified including three sulfur containing compounds which represented about 1.8% of the volatiles of the total petroleum ether extract. This prompted us to study and report its possible antimicrobial activity. In addition, the antibacterial and antifungal screening of different extracts of Spergularia marina (L.) Griseb. as well as some isolates have been performed using agar diffusion method.

Comparison of Chemical Compositions and Antimicrobial Activities of Essential Oils from Three Conifer Trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa

  • Lee, Jeong-Ho;Lee, Byung-Kyu;Kim, Jong-Hee;Lee, Sang-Hee;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • The chemical compositions, and antibacterial and antifungal effects of essential oils extracted from three coniferous species, Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa, were investigated. Gas chromatography mass analysis of the essential oils revealed that the major components and the percentage of each essential oil were 16.66% $\beta$-phellandrene and 14.85% $\alpha$-pinene in P. densiflora; 31.45% kaur-16-ene and 11.06% sabinene in C. japonica; and 18.75% bicyclo [2,2,1] heptan-2-ol and 17.41% 2-carene in Ch. obtusa. The antimicrobial assay by agar disc diffusion method showed that $2.2{\mu}g$ of Ch. obtusa oil inhibited most effectively the growth of Escherichia coli ATCC 33312 and Klebsiella oxytoca ATCC 10031, whereas the C. japonica oil gave weak antimicrobial activity. The minimal inhibitory concentration(MIC) values for bacterial strains were in the range of 5.45-21.8 mg/ml depending on essential oils, but most Gram-negative bacteria were resistant even at 21.8 mg oil/ml. P. densiflora oil showed the most effective antifungal activity and the MIC values for Cryptococcus neoformans B42419 and Candida glabrata YFCC 062CCM 11658 were as low as 0.545 and 2.18 mg/ml, respectively. Cryp. neoformans B42419 was the most sensitive to all essential oils in the range of 0.545-2.18 mg/ml. Our data clearly showed that the essential oils from the three conifers had effective antimicrobial activity, especially against fungi.

Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study

  • Abbaszadegan, Abbas;Gholami, Ahmad;Mirhadi, Hosein;Saliminasab, Mina;Kazemi, Aboozar;Moein, Mahmood Reza
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Objectives: The usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX. Materials and Methods: Gas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX. Results: Twenty-seven constituents were recognized in FGEO. The major component of the oil was ${\beta}$-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at $50{\mu}g/mL$ was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX. Conclusions: FGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms.

Chemical Composition and Antimicrobial Efficiency of Swietenia macrophylla Seed Extract on Clinical Wound Pathogens

  • Gopalan, Hanan Kumar;Md Hanafiah, Nor Faizzah;Ring, Leong Chean;Tan, Wen-Nee;Wahidin, Suzana;Hway, Teo Siew;Yenn, Tong Woei
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2019
  • Microbial wound infection prolonged the hospitalization and increase the cost for wound management. Silver is commonly used as antimicrobial wound dressing. However, it causes several adverse side effects. Hence, this study was aimed to evaluate the antimicrobial efficiency of Swietenia macrophylla seed extract on clinical wound pathogens. Besides, the bioactive constituents of the seed extract were also determined. S. macrophylla seeds were extracted with methanol by maceration method. The seed extract inhibited 5 test bacteria and 1 yeast on disc diffusion assay. The antibacterial activity was broad spectrum, as the extract inhibited both Gram positive and Gram negative bacteria. On kill curve analysis, the antibacterial activity of the seed extract was concentration-dependent, the increase of extract concentration resulted in more reduction of bacterial growth. The extract also caused 99.9% growth reduction of Bacillus subtilis relative to control. A total of 21 compounds were detected in gas chromatography- mass spectrometry analysis. The predominant compounds present in the extract were oleic acid (18.56%) and linoleic acid (17.72%). In conclusion, the methanolic extract of S. macrophylla seeds exhibited significant antimicrobial activity on clinical wound pathogens. Further investigations should be conducted to purify other bioactive compounds from the seeds of S. macrophylla.

Anti-Porcine Epidemic Diarrhea Virus (PEDV) Activity and Antimicrobial Activities of Artemisia dubia Essential Oil (참쑥(Artemisia dubia) 오일의 돼지 유행성 설사 바이러스(Porcine Epidemic Diarrhea Virus)에 대한 항바이러스 항균활성)

  • Kim, Jong-Im
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.396-402
    • /
    • 2012
  • The chemical composition, anti-porcine epidemic diarrhea virus (PEDV) activity and antimicrobial activity of Artemisia dubia essential oil were evaluated in this study. Fifty eight compounds from A. dubia essential oil were identified through analysis by gas chromatography-mass spectrometry (GC-MS). The major constituents of the oil were camphor (17.18 %), germacrene-D (15.70%), trans (${\beta}-$) racaryophyllene (6.79%), ene thujones (6.57%), 1, 8-cineole (5.94%) and camphene (5.08%). The essential oil was evaluated for antiviral activity against PEDV in Vero cells using a cytopathic effect (CPE) reduction method. The oils actively inhibited PEDV replication with a 50% inhibitory concentration ($IC_{50}$) of 43.7 ${\mu}^3/mL$. The 50% cytotoxicity concentration ($CC_{50}$) of the oils was over 100 ${\mu}/mL$ and the derived therapeutic index was >2.3. Similar analysis of the ribavirin revealed that they have a relatively weaker efficacy when compared to the oils. The antimicrobial activity of the essential oil against 5 microorganisms was evaluated by the disc diffusion method. The essential oil exhibited antimicrobial activity against 5 tested microorganisms with a clear zone of 8-22 mm. Among the tested microorganisms, Streptococcus pyogenes was the most sensitive and Candida albicans the least. Therefore, in can be concluded that essential oils of A. dubia may have interesting applications for microbial control or the control of PEDV-derived diseases.

Thermal Generation and Antimicrobial Activity of Unusual Heterocyclic Sulfur Compounds in Garlic

  • Chung, In-Shick;Chae, Kyung-Yun;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1032-1037
    • /
    • 2008
  • Lowly volatile heterocyclic sulfur compounds generated in autoclaved garlic extract were isolated and identified, and their antimicrobial activity was determined. Two kinds of unusual volatile sulfur compounds were separated from heated garlic by preparative recycling high performance liquid chromatography (HPLC), and identified by gas chromatography (GC)-mass spectrometry (MS) and $^1H$-nuclear magnetic resonance (NMR). They had heterocyclic structures with 4 to 5 sulfur atoms in the molecules. 4-Methyl-1,2,3-trithiolane (MTTT) is highly volatile and was not able to be concentrated, and was identified by GCMS only. MTTT and 6-methyl-1,2,3,4,5-pentathiepane (MPTP) are lowly volatile and were obtained in pure states to be positively identified for the first time. All 3 heterocyclic sulfur compounds began to appear by the time when the early-formed diallyl sulfides started to disappear. The minimum inhibitory concentration range of MTTT and MPTP was determined to be between 1 and 6 ppm against all yeasts tested. MTTT and MPTP were lowly volatile and sparingly soluble in water.

Isolation of 3,4-Dihydroxybenzoic Acid, Which Exhibits Antimicrobial Activity, from Fruits of Gardenia jasminoides Ellis (치자 열매에서 항미생물 활성을 갖는 3,4-Dihydroxybenzoic Acid의 분리)

  • Yim, Cheol-Keun;Moon, Jae-Hak;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1386-1391
    • /
    • 1999
  • The methanol extract of Gardenia jasminoides Ellis showed antimicrobial activity against bacteria and yeasts. The extract was successively purified with solvent fractionation, silica gel adsorption column chromatography, Sephadex LH-20 column chromatography, octadecylsilane column chromatography. The purified active substance was isolated by high performance liquid chromatography. The isolated compound was 3,4-dihydroxybenzoic acid which was determined by mass spectrometer, gas chromatograph-mass spectrometer, $^{1}H-nuclear$ magnetic resonance, $^{13}C-nuclear$ magnetic resonance and two-dimensional nuclear magnetic resonance. The content of 3,4-dihydroxybenzoic acid was $32.7\;{\mu}g/g$ in dried fruits of Gardenia jasminoides Ellis.

  • PDF