• Title/Summary/Keyword: antimicrobial compound

Search Result 350, Processing Time 0.018 seconds

Antimicrobial Activity of Chemical Substances Derived from S-Alk(en)yl-L-Cysteine Sulfoxide (Alliin) in Garlic, Allium sativum L.

  • Choi, Mi-Kyung;Chae, Kyung-Yeon;Lee, Joo-Young;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Garlic (Allium sativum L.) contains a specific sulfur compound, the S-allyl derivative of L-cysteine sulfoxide, and has long been known for its antimicrobial activity against various microorganisms, including bacteria, fungi, and protozoa. The principal antimicrobial compound of garlic is S-allyl-L-propenethiosulfinate (allicin) which is generated by an enzyme, alliinase (L-cysteine sulfoxide lyase), from S-allyl-L-cysteine sulfoxide (alliin). This compound exists exclusively in Allium as a major non-protein sulfur-containing amino acid. S-Allyl-L-propenethiosulfinate belongs to the chemical group of thiosulfinates and is a highly potent antimicrobial. The potency of garlic extract is reduced during storage since thiosulfinates are unstable and are degraded to other compounds some of which do not have antimicrobial activity. Diallyl polysulfides and ajoene are sulfur compounds derived from allicin that do possess antimicrobial activity. It was recently found that garlic becomes antimicrobial on heating at cooking temperatures, and that the compound responsible for this is allyl alcohol, which is generated from alliin by thermal degradation.

Purification of Antimicrobial Substance for the Extract from the Root Bark of Morus alba (상백피 추출물로부터 향균성 물질의 분리정제)

  • 박욱연;김신희;김지회;김용관;장동석
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.225.1-230
    • /
    • 1995
  • The ethanol extract from the root bark of Morus alba showed the strongest antimicrobial activity on the growth of almost all the tested microorganisms which were food-borne pathogens and food-related microorganisms. 1) In order to isolate and purify of antimicrobial substance extracted from the root bark of Morus alba, the antimicrobial substance from the ethanol extract which exhibited a strong antimicrobial activity was purified by solvent fractionation, silica gel column chromatography, TLC and HPLC. Among the fractions fractionated by 4 kind of solvents from the ethanol extract, the antimicrobial activity of ethyl acetate fraction had the strongest antimicrobial activity against B. subtilis. Unknown compound were isolated from the ethyl acetate fraction by silica gel column chromatography, TLC and HPLC and the compounds showed strong absorbance at 207, 217 and 285 nm, therefore, it was supposed to be a kinds of aromatic compound.

  • PDF

Antimicrobial Characterictics of Antimicrobial Agent (Antibiotics) and Reduction Effect on Mal-ordour. (항균제의 항균특성 및 악취제거 효과)

  • Shin, Choon-Hwan;Kim, Jong-Hyun;Han, Sun-Hong
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • Various antimicrobial agents are widely used for the purpose of antimicrobial process. We investigated antimicrobial activity and reduction efficiency of mal-ordour by the diphenyl ether compound (2,4,4'- trichloro -2'- hydroxy diphenyl ether) against Sraphylocom aureus(S.aureus and Proton vulgaris(p.vulgaris causing the mal-ordour, Especially, the diphenyl ether compound is not restricted to the regulation of water-contamination. In this research, we found that the optimum concentration of diphenyl ether compound was 1.5w% for both strains and antimicrobial expressions were c0.38t= 2.56 for S.aureus, c0.38t=2.67 for P.vulgaris. We found also that -OH group played the role of antimicrobial functional group. Lastly, reduction effect of mal-ordour was more than 90% for both strain at the optimum conditions. Key Words : antimicrobial agents, antimicrobial activity, reduction effect of mal-ordour, antimicrobial expression, antimicrobial functional group.

  • PDF

Purification and Production Conditions of Antimicrobial Compound from Methylotrophic Actinomycetes MO-16 (Methanol 자화방선균 MO-16으로부터 항균성 물질의 정제 및 생산조건)

  • 김현수;이정수
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 1999
  • A methylotrophic actinomycetes strain MO-16, which produce the antimicrobial compound, was isolated from soil and supposed as Amycolatopsis sp. based on taxonomic studies. The cell-free extract of methanol-grown strain MO-16 showed dehydrogenase activity for methanol and formaldehyde when various electron acceptors were added for oxidation. On the other hand, methanol did not affect the production of antimicrobial compounds, and organic nitrogen sources such as corn steep liquor and peptone were better than inorganic nitrogen sources. These compounds showed broad antimicrobial spectrum to the tested strains such as bacteria and yeast. The antimicrobial comounds were very stable under heat(121$^{\circ}C$), acid(pH2.0), alkali(pH11.0) treatments. These compounds were isolated by ethylacetate extract, silica gel column chromatography and reverse phase HPLC. Two compounds(peak 1 and 2) were detected as antimicrobial compounds through the HPLC analysis. The peak 2 was purified as a single compound and revealed a 98% purity.

  • PDF

Purification of Antimicrobial Compounds and Antimicrobial Effects of Schima wallichii subsp. liukiuensis against Candida sp. (Schima wallichii subsp. liukiuensis의 Candida종에 대한 항균효과 및 항균물질의 분리정제)

  • Choi, Mynug-Suk;Shin, Kuem;Yang, Jae-Kyung;Ahan, Jin-Kwon;Kwon, Oh-Woong;Lee, Yi-Young
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • To develop natural antimicrobial substances from Theaceae, Schima wallichii subsp. liukiuensis was selected from 218 woody plants, and antimicrobial compounds against bacteria, fungi, and yeast were isolated. The antimicrobial activity of ethanol extracts proved higher than those of other organic solvents. The antimicrobial activity of S. liukiuensis extract showed no differences in sesonal variation, but, that of plant part was high in bark at autumn. An antimicrobial substance was isolated from the extract of Schima using column chromatography packed with silica gel and sephadex LH-20, and then a purified antimicrobial substance (Compound I) was obtained using HPLC analysis. The Compound I in the analysis of UV, IR, and GC-MS presumed a triterpene or steroidal saponin, ${\alpha}$-sitisterol as aglycon combined three sugars. The minimal inhibitory concentration (MIC) of the Compound I against a bacteria, fungi, and yeast were 1.25 g/L, 5.0 g/L, and 0.040 g/L, respectively. This is much lower than the MIC of hinokitiol, an natural antimicrobial compound used commercially, which suggests that Compound I could be developed as a natural preservative and pharmaceuticals.

  • PDF

한국산 도꼬마리 추출물의 항균효과 및 분리 정제

  • 김현수;신재욱
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.183-188
    • /
    • 1997
  • Antimicrobial activity of various extracts of Xanthium strumarium L. was tested against 25 strains of bacteria, yeast and fungus. The crude ethylacetate extract exhibited strong growth inhibition to the tested strains with the exception of partial Gram-negative bacteria. The property of antimicrobial compound was very stable under heat treatment at $120^{\circ}C$, but it was unstable in acid (pH 3.0) and alkali (pH 10.0) treatment. The antimicrobial compounds were purified by boiling water extraction, ethylacetate extraction, charcoal column chromatography, silica gel column chro- matography and reverse phase HPLC. The purified compound A and B were detected in a single peak (each above 98% purity) through the HPLC analysis. The compound A and B showed a strong growth inhibition against Gram-negative and positive bacteria in the agar diffusion method. When tested by the FDA method using the esterase, compound A mainly inhibited the growth of bacteria and compound B showed the growth inhibition of both bacteria and yeasts.

  • PDF

The antimicrobial compound of Rhus verniciflua barks against fish pathogenic gram-negative bacteria, Edwardsiella tarda and Vibrio anguillarum (어류병원성 그람음성세균 Edwardsiella tarda와 Vibrio anguillarum에 대한 칠피의 항균활성물질)

  • Kang, So-Young
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • To obtain antimicrobial compounds against fish pathogenic bacteria from natural products, 80% methanolic extracts from 14 species of medicinal plant were screened for antimicrobial activity against fish pathogenic bacteria, Edwardsiella tarda and Vibrio anguillarum. Among them, Glycyrrhiza glabra, Rhus vemiciflua and Sanguisorba officinalis were effective for growth inhibition of Gram-negative bacteria, both E. tarda YSF and V. anguillarum YSR. Through the activity-guided isolation for R. verniciflua extract that exhibited the highest antimicrobial activity among three extracts, one antimicrobial compound (1) was isolated and identified as methyl-3,4,5-trihydroxybenzoate, or methyl gallate. This compound significantly inhibited the growth of tested strains of both E. tarda and V. anguillarum exhibiting MIC of 1 mg/ml for each strain.

Antimicrobial Activity of Garlic Heated under Different Conditions, Time of Heating, and pH

  • Kim, Eun-Hee;Kang, Seung-Sik;Kang, Dong-Hee;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.771-775
    • /
    • 2009
  • Antimicrobial activity of garlic (pH 6.0) heated at $120^{\circ}C$ reached its maximum at 45 min of heating and maintained the level for the rest of heating time (300 min) when tested against Candida utilis ATCC42416. The principal antimicrobial compound was allyl alcohol (AA), a highly volatile compound without sulfur in its molecule. The concentration of AA in heated garlic gradually increased to over 2,000 ppm for the first 90 min and stayed at the level without appreciable changes in spite of further heating. Other antimicrobial compounds secondary to AA were lowly volatile sulfur compounds including diallyl polysulfides (diallyl trisulfide, diallyl tetrasulfide, and diallyl pentasulfide) and heterocyclic sulfur compounds (4-methyl-1,2,3-trithiolane, 5-methyl-1,2,3,4-tetrathiane, and 6-methyl-1,2,3,4,5-pentathiepane). When the pH of the garlic extract was lowered before heating, considerably more secondary antimicrobial sulfur compounds were formed and the antimicrobial activity was stronger than the pH unadjusted garlic. Lowly volatile sulfur compounds contributed a significant part of antimicrobial activity of heated garlic only during the early period (45-120 min) of heating regardless of pH treatment.

Isolation and Antimicrobial Activity of Dichlororinated Bibenzyl Compound

  • Na, Young-Soon;Lee, Jae-Sook;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.231-234
    • /
    • 2007
  • Dichlororinated bibenzyl compound (4) has been isolated from the New Zealand liverwort. This compound was elucidated using 1D/2D-NMR and mass spectral method. The compound (3) inhibited the growth of the Gram positive bacterium Bacillus subtilis ATCC 19659, (2 mm inhibition zone and 2 mm inhibition zone at 30 ${\mu}$g/disc), Candida albicans ATCC 14053, (2 mm inhibition zone and 2 mm inhibition zone at 30 ${\mu}$g/disc), and the dermatophytic fungi Trichophyton mentagrophytes ATCC 28185, (12 mm inhibition zone at 30 ${\mu}$g/disc) and Cladosporium resinae ATCC 52833 (2 mm inhibition zone at 30 ${\mu}$g/disc). This bibenzyl compound (4) exhibited antimicrobial activity.

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents (토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가)

  • Cho, Seung-Sik;Hong, Joon-Hee;Chae, Jung-Il;Shim, Jung-Hyun;Na, Chong-Sam;Yoo, Jin-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.469-481
    • /
    • 2014
  • IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.