• Title/Summary/Keyword: antifungal resistance

Search Result 107, Processing Time 0.022 seconds

Cosmetic Effects of Dietary Fiber from Mozuku, Cladosiphon novae-caledoniae Kylin (큰실말(Cladosiphon novae-caledoniae Kylin) 부산물의 화장품소재 특성)

  • Kim, In Hae;Lee, Jae Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • To investigate the effect of dietary fiber from mozuku, Cladosiphon novae-caledoniae kylin (C. novae-caledoniae kylin) on the skin care, we measured anti-oxidant activity, anti-microbial activities, tyrosinase activity inhibition and elastic activity. B16F10 melanoma cell (MTT assay) were used to measure cell viability. MC and MI exhibited in vitro antibacterial activity against Staphyloccus aureus (S. aureus) and MRSA without antifungal activity. Mozuku extract (MS) showed excellent tyrosinase inhibition effect compared to arbutin as a positive control (to 49% for tyrosine). The wrinkle-improving effect was relatively low. However, wrinkle-improving effect was relatively low. DPPH free radical scavenging activity was 89% in a concentrations at $500{\mu}g/mL$. These results indicate that the mozuku extracts may be an effective cosmetic ingredient for skin whitening.

Therapeutic Anti-inflammatory Effect of Ginkgo Terpene on Arthritis due to Candida albicans (Ginkgo Terpene의 Candidate albicans로 인한 관절염에 대한 치료효과)

  • Lee, Soon-Hyun;Lee, Jue-Hee;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.140-146
    • /
    • 2005
  • Candida albicans, a polymorphic fungus, causes systemic and local infections. Recent reports show that the fungus is a main etiological agent for the arthritis. For trea tment, antifungal drugs and/or rheumatoid drugs are used, but resistance and side effects limit application of the drugs. In search of new sources for treatment of the fungal arthritis, we choose Egb 761 (extract of Ginkgo leaves 761), one of the most popular over-the-counter herbal medicines. The Egb 761 contains two major ingredients such as terpene and flavonoid. In the present study, we examined if the terpene portion of Egb 761 had anti-inflammatory activity against C.albicans-caused arthritis. The terpene was extracted with combination of methanol and water from the Egb 761, followed by gel-permeation chromatography. Presence of terpene was determined by the Salkowski colorimetric method and HPLC analysis. For an animal model of inflammation induction, mice were given an emulsion form of C.albicans cell wall mixed with Complete Freund's Adjuvant (CFA) by footpad-injection. Results showed that intraperitoneal administration of the water-soluble portion that contained terpene and flavonoid reduced the inflammation. Whereas the terpene had anti-inflammatory activity, flavonoid portion had no such activity, For determination of possible mechanism of the activity, the terpene seemed to be suppression of nitric oxide (NO) production from LPS-treated macrophages. Taken together the Ginkgo terpene may have anti-inflammatory effect against C.albicans-caused arthritis, possibly by blocking NO production.

Foliar Application of Plant Growth-Promoting Rhizobacteria Increases Antifungal Compounds in Pea (pisum sativum) Against Erysiphe pisi

  • Bahadur, A.;Singh, U. P.;Sarma, B. K.;Singh, D. P.;Singh, K. P.;Singh, A.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.129-134
    • /
    • 2007
  • Systemic effect of two plant growth-promoting rhizobacterial (PGPR) strains, viz., Pseudomonas fluorescens (Pf4) and P. aeruginosa (Pag), was evaluated on pea (Pisum sativum) against the powdery mildew pathogen Erysiphe pisi. Foliar spray of the two PGPR strains was done on specific nodal leaves of pea and conidial germination of E. pisi was observed on other nodal leaves, distal to the treated ones. Conidial germination was reduced on distant leaves and at the same time, specific as well as total phenolic compounds increased in the leaves distal to those applied with PGPR strains, thereby indicating a positive correlation. The strains induced accumulation of phenolic compounds in pea leaves and the amount increased when such leaves were get inoculated with E. pisi conidia. Between the two strains, Pag was found to be more effective than Pf4 as its effect was more persistent in pea leaves. Foliar application of PGPR strains for the control of powdery mildew of pea is demonstrated in vitro while correlating it with the increased accumulation of plant phenolics.

Photodynamic Therapy Using Topically Applied 5-ALA, MAL and CLC for Canine Otitis Externa

  • Lee, Min-Ho;Song, Hee-Sung;Son, Wongeun;Yun, Young-Min
    • Journal of Veterinary Clinics
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Canine otitis externa is a common disorder in small animal practice with prevalence up to 20%. In a large percentage of cases, canine otitis externa is a chronic and recurrent disease also associated with drug-resistant bacteria that is difficult to treat with traditional antibiotics. Photodynamic therapy (PDT) is a new strategy to exterminate pathogenic microorganisms such as bacteria and fungi. The purpose of this study was to investigate the effectiveness of photodynamic therapy against canine otitis externa using three photosensitizer (PS); 5-Aminolevulinic acid (5-ALA) and Methyl aminolevulinic acid (MAL) with semiconductor laser diode (SLD, 635nm of wave length), Chlorophyll-lipoid complex (CLC) with light-emitting diode (LED, 660nm of wave length). After PDT, dogs showed improved Otitis Index Score (OTIS) in swelling, exudate, odor, and pain. A result of the cytology test revealed decrease of bacteria and malassezia count in the oil immersion field and colony forming units count. PDT was effective as a bacteriocide of methicillin-resistant Staphylococcus pseudintermedius (MRSP) and a fungicide of Malassezia pachydermatis. MAL and 5-ALA were more effective PS against canine otitis externa than CLC. These results suggest that PDT is a new strategy to exterminate pathogenic microorganisms such as bacteria and fungi. PDT can be considered as a new therapeutic approach for canine recurrent otitis externa and a countermeasure to drug resistance that is a disadvantage of traditional antibiotic and antifungal therapy.

Culturable Endophytes Associated with Soybean Seeds and Their Potential for Suppressing Seed-Borne Pathogens

  • Kim, Jiwon;Roy, Mehwish;Ahn, Sung-Ho;Shanmugam, Gnanendra;Yang, Ji Sun;Jung, Ho Won;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.

Botrytis cinerea hypovirulent strain △BcSpd1 induced Panax ginseng defense

  • Shuhan Zhang;Junyou Han;Ning Liu;Jingyuan Sun;Huchen Chen;Jinglin Xia;Huiyan Ju;Shouan Liu
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.773-783
    • /
    • 2023
  • Background: Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence. Methods: We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed. Results: We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth. Conclusion: B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.

Phenyl substituent effect on the fungicidal activity of N-Phenyl-O-phenylthionocarbamate derivatives (N-Phenyl-O-phenylthionocarbamate 유도체의 항균활성에 미치는 phenyl 치환기의 효과)

  • Sung, Nack-Do;Soung, Min-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • A series of N-phenyl-O-phenylthionocarbamate derivatives were synthesized and determinated fungicidal activities in vitro against gray mold (Botrytis cinerea) and capsicum phytophthora blight (Phytophthora capsici) which showed resistance and sensitivity to benomyl and metalaxyl as systemic fungicides, respectively. The structure-activity relationship (SAR) was investigated by Free-Wilson analysis method and Hansch method. From the basis on the findings, the N-phenyl(X) groups had more contributions than O-phenyl(Y) groups did and ortho-substituents on the N-phenyl group showed high fungicidal activities. Especially, 4-cyano substituent, 2 as X-group showed 50% inhibition($pI_{50}=5.50$) of hyphae growth at 0.8ppm against resistance P. capsici (RPC) And hydroxyl substituents, 12 and 23 displayed the highest fungicidal activity against resistant B. cinerea (RBC), sensitive B. cinerea (SBC), and sensitive P. capsici (SPC). Antifungal activities of SPC were dependent upon molar refractivity (MR) constant and those of others relied on hydrophobic parameters (${\sigma}$ and logP). For increasing fungicidal activity against RPC and SBC, the optimum values of the sigma (${\sigma}$) and field(F) constants as electron withdrawing groups were 0.32 and 0.18, respectively.

  • PDF

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

Effects of Chinae Rhizoma Extracts on the Growth of the Dermatophytes (토복령알코홀추출물의 항진균작용)

  • Lee, Jong-Hwa;Song, Byung-Sook;Lee, Sun-Hee;Kim, Chung-Il
    • The Korean Journal of Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.39-45
    • /
    • 1973
  • The majority of drugs used in the treatment of superficial fungal infections has limited values due to its low efficacy or development of resistance. For the purpose of searching efficacious agent on the superficial fungal infections induced by dermatophytes which is regarded as the most malicious one, authors examined whether Chinae Rhizoma Extracts have significant on it. Extracts from Smilax china Linne used for the study are water extract (CRWE), ethanol extract (CREE) and methanol extract (CRME). In in vitro studies, the spores of the dermatophytes were inoculated on Sabouraud's glucose agar media which contained three extracts of Chinae Rhizoma in each concentration of $500\;{\mu}g/ml$, $1,000\;{\mu}g/ml$ and $5,000\;{\mu}g/ml$ respectively, and also $1,000\;{\mu}g/ml$ of salicylic acid and undecylenic acid $1,000\;{\mu}g/ml$ as comparable drugs. The growth of the dermatophytes were observed for 3 weeks. The species of the dermatophytes used in this experiment were Epidermophyton floccosum, Microsporum canis, Microsporum cookei, Microsporum gypseum, Microsporum nanum, Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton tonsurans and Trichophyton verrucosum distributed from The Institute of Tropical Medicine in Belgium. The results of the studies were as follows: 1. The growth of M. canis, M. nanum, T. mentagrophytes, T. rubrum & T. tonsurans were slightly inhibited in CRWE $1,000\;{\mu}g/ml$ and CRWE $5,000\;{\mu}g/ml$, and only slight inhibition on the growth of E. floccosum, M. canis and M. gypseum were observed in CRWE $5,000\;{\mu}g/ml$. 2. Complete inhibition of T. rubrum, moderate inhibition of M. nanum & T. tonsurans, and slight inhibition of E. floccosunl, M. canis, M. cookei & T. mentagrophytes in growth were observed in concentration of CREE $500\;{\mu}g/ml$. The growth of M. gypseum was slightly inhibited, moderate inhibition on the growth of M. canis, M. cookei & T. mentagrophytes, and complete inhibition of E. floccosum, M. nanum, T. rubrum & T. tonsurans in growth were observeed by CREE $1,000\;{\mu}g/ml$. With $5,000\;{\mu}g/ml$ of CREE, the growth of E. floccosum, M. canis, M. cookei, M. gypseum, T. mentagrophytes, T. rubrum & T. tonsurans were completely inhibited except T. verrucosum being showed slight inhibition. 3. In CRME $500\;{\mu}g/ml$, slight inhibition of T. verrucosum, moderate inhibition of M. gypseum and complete inhibition of E. floccosum, M. canis, M. cookei, T. mentagrophytes, T. rubrum & T. tonsurans in growth were observed. The growth of E. floccosum, M. canis, M. cookei, M. gypseum, M. nanum, T. mentagrophytes, T. rubrum & T. tonsurans were completely inhibited except T. verrucosum being showed moderate inhibition in both CRME $1,000\;{\mu}g/ml$ and CRME $5,000\;{\mu}g/ml$. 4. In $1,000\;{\mu}g/ml$ of undecylenic acid, slight inhibition of T. verrucosum and complete inhibition of E, floccosum, M. canis, M. cookei, M. gypseum, M. nanum, T. mentagrophytes, T. rubrum & T. tonsurans in growth were observed. From the above results, it was found that Chinas Rhizoma Alcoholic Extracts(CREE & CRME) exerted significant antifungal activity, and their effects were probably derived from the pharmacological actions of triterpenoidal saponin and steroidal saponin.

  • PDF

Effect of Bacillus subtilis C4 and B. cereus D8 on Plant Growth of Canola and Controlling Activity Against Soft Rot and Stem Rot (Bacillus subtilis C4와 B. cereus D8에 의한 유채의 생육증대 및 무름병과 균핵병 방제효과)

  • Lee, Jae-Eun;Lee, Seo-Hyeun;Park, Kyung-Soo;Park, Jin-Woo;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.275-282
    • /
    • 2009
  • The effect of two plant growth-promoting rhizobacteria (PGPR) on plant growth and systemic protection against soft rot disease and stem rot disease of canola (Brassica napus), caused by Erwinia carotovora and Sclerotinia sclerotiorum was investigated in a laboratory and a greenhouse. Selected PGPR strains C4 and D8 were treated to canola seeds by soaking. Strains C4 and D8 significantly not only increased plant height and root length about 74% and 40.3% and also reduced disease severity of soft rot disease by 80% by C4 and D8 respectively, compared to the control. Especially strain C4 showed antifungal activity against 6 fungal pathogens, S. sclerotiorum, Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Phytophthora capsici and Colletotrichum acutatum. In greenhouse experiment, the seed treatment of both of them increased plant height, leaf width and leaf length of canola plant to 19.5% and 24.9%, 11.3% and 15.3%, and 14.1% and 20.7% by C4 and D8, respectively, and reduced disease severity of S. sclerotiorium. These results indicate that these two PGPR strains can decrease disease severity and increased plant growth under greenhouse condition. Therefore, these two bacteria have a potential in controlling Sclerotinia stem rot of canola. These strains have to investigate under field condition to determine their role of antibiosis, induced systemic resistance and plant growth promotion on canola.