• 제목/요약/키워드: antifungal activity.

검색결과 1,279건 처리시간 0.025초

Capsaicine의 간장방미효과에 관한 연구 (Studies on the Antifungal Activity of Capsaicine for 'Ganjang' Soy Sauce)

  • 심길순
    • 약학회지
    • /
    • 제8권3호
    • /
    • pp.69-73
    • /
    • 1964
  • Cayenne pepper used traditionally as hot seasoning and for antifungal agent in "Ganjang" soy sauce in Korea. However the correlation between its component and antifungal activity has been unknown. CApsaicine is known as hot component of cayenne pepper. Antifungal activity of capsaicine in 'Ganjang' soy sauce was studied and the results are as follows; 1) In 'Ganjang' soy sauce, antifungal activity of capsaicine were strong in same degree with butyl-p-hydroxybenzoate. 2) Antifungal activity of capsaicine were intensified by the addition of sodium chloride. 3) The antifungal activity of capsaicine was increased by lower pH (pH 5.5-4.5) of 'Ganjang' soy sauce.

  • PDF

Synergistic Antifungal Activity of Magnoliae Cortex and Syzyii Flos against Candida albicans

  • YOON, Jeemin;KIM, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권2호
    • /
    • pp.142-153
    • /
    • 2021
  • Candida albicans is a dermal fungus of the human body that is known to cause oral candidiasis, vaginal candidiasis, and bloodstream infections in immunocompromised people or in certain environmental conditions. As cases of strains resistant to antifungal agents in C. albicans have been reported, studies using plant materials as safe antifungal agents are being actively conducted. In this study, a total of 17 edible plant extracts showed antifungal activity against C. albicans as a result of evaluating a 280-plant extract library using paper disk diffusion method. Among them, the four extracts with the strongest antifungal activity (Cinnamomi Cortex, Cinnamomi Ramulus, Magnoliae Cortex, and Syzygii Flos) were selected and evaluated for synergistic antifungal activity against C. albicans. The combination of Magnoliae Cortex and Syzygii Flos showed a synergistic activity. The antifungal activity was evaluated based on the concentrations of magnolol and eugenol, the respective components of Magnoliae Cortex and Syzygii Flos. Magnolol and eugenol showed synergistic antifungal activities at the concentration ratio of 1:25 - 1:61. The antifungal activity of these two compounds contributes 28 to 48% to the synergistic antifungal activity of the combination of Magnoliae Cortex and Syzygii Flos extract. In this study, we propose that a combination of Magnoliae Cortex and Syzygii Flos can effectively inhibit the growth of C. albicans and that magnolol and eugenol are the responsible inhibitory compounds.

Synergistic Antifungal Activity of Phellodendri Cortex and Magnoliae Cortex against Candida albicans

  • NA, Hyunjeong;KIM, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권1호
    • /
    • pp.12-30
    • /
    • 2022
  • Many studies on plant extracts have been reported for the treatment of candidiasis caused by Candida albicans, a representative fungal infection. This study demonstrates the synergistic antifungal activity of the combination of Phellodendri Cortex and Magnoliae Cortex, previously reported to have antifungal efficacy. Considering the antifungal efficacy and the separation of the active constituents, berberine and magnolol, hot water extraction and carbon dioxide supercritical extraction were selected for Phellodendri Cortex and Magnoliae Cortex, respectively. A combination of 0.55 g/L hot water extract of Phellodendri Cortex and 0.59 g/L carbon dioxide supercritical extract of Magnoliae Cortex showed synergistic antifungal activity. The synergistic antifungal activity of 160 μM berberine and 100 μM magnolol, which are representative antifungal compounds of Phellodendri Cortex and Magnoliae Cortex, respectively, contributes to the synergistic antifungal effect of their extracts. The additive decrease in cellular ergosterol level and the increased antifungal efficacy by extracellular ergosterol suggest that disruption of the biological function of ergosterol in the cell membrane is not responsible for the synergistic antifungal activity of berberine and magnolol. Synergistic cellular release of chromosomal DNA upon mixing berberine and magnolol indicates that disruption of the cellular structure is responsible for the synergistic antifungal effect of berberine and magnolol.

First Report: Diversity of Endophytic fungi Possessing Antifungal Activity Isolated from Native Kougoed (Sceletium tortuosum L.)

  • Sishuba, Anathi;Leboko, Jessica;Ateba, Collins Njie;Manganyi, Madira Coultyne
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.89-94
    • /
    • 2021
  • Forty-three (n = 43) endophytic fungi with different morphologic characteristics were from a medicinal plant Sceletium tortuosum, were utilized to investigate their antifungal effectiveness against pathogenic fungi. All fungal isolates exhibited antifungal activity against one or more pathogens in the dual culture test whereas only 33 fungal culture filtrates (77%) showed decent antifungal effect. Fusaria and Aspergillus were the dominate genus that displayed significant antifungal activity. Isolates GG02, GG09, ND15, and ND17 showed the broadest spectrum of antifungal activity. Furthermore, culture filtrate of Fusarium sp. DR08 exhibited a broad range of antifungal activity against all the pathogens. The results suggest endophytic fungi isolated from medicinal plant might be a source of novel bioactive molecules. To the best our knowledge, this is the first report on endophytic fungi isolated from native kougoed exhibiting antifungal activity against plant fungal pathogens.

Candida와 Penicillium 속 진균에 대한 천연물의 항진균 효과 검색 (Screening of the Antifungal Activity from Natural Products against Candida albicans and Penicillium avellaneum)

  • 민병선;방규호;이준성;배기환
    • 약학회지
    • /
    • 제40권5호
    • /
    • pp.582-590
    • /
    • 1996
  • For the research of antifungal active constituents from natural products, 226 plants were extracted with ether and methanol, separately, and screened antifungal activity against Candida albicans and Penicillium avellaneum cells. The results demonstrated that 30 samlpes showed antifungal activity in ether or methanol extracts and 17 samples in ether extracts and 20 samples in methanol extracts against C. albicans. Against P. avellaneum, 19 samlpes showed antifungal activity in ether or methanol extracts and 17 samples in ether extracts and 11 samples in methanol extracts, respectively. The antifungal activity of natural products against C. albicans were showed more sensitive than P. avellaneum, and the polarity of the solvent was not specific in antifungal activity.

  • PDF

중급 지방산 항진균 활성과 진균의 Plasma membrane H+-ATPase에 대한 저해작용 (Antifungal Activity of Medium-chain Saturated Fatty Acids and Their Inhibitory Activity to the Plasma Membrane H+-ATPase of Fungi)

  • 이상화;김창진
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.354-358
    • /
    • 1999
  • In order to know the antifungal characteristics of saturated fatty acids having 6 to 12 carbons, their minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were estimated against Saccharomyces cerevisiae. Fatty acids from C6 to C11 exhibited increasing activity with chain length, but C12 fatty acid did not show activity at all. In relation to antifungal modes of actions, fatty acids investigated showed on inhibitory activity toward the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Their inhibitions to the glucose-induced acidification and ATP hydrolysis caused by the proton pump were found to be in common wiht antifungal activities. At the test concentration of 1mM, hexanoic acid (C6) showed the lowest inhibition of about 30%, while undecanoic acid(C11) showed the strongest inhibition of over 90%. In addition, as seen with antifungal activity, the inhibitory activity of dodecanoic acid (C12) was suddenly reduced to less than 50%.

  • PDF

토양으로부터 Candida albicans 의 균사형태에 선택적인 활성을 나타내는 미생물로부터 항진균 물질의 탐색 (Screening of Antifungal Compounds from Microorganisms with Preferential Activity against the Mycelial Phase of Candida albicans)

  • 김성욱;남지연;권병목;손광희;복성해
    • 한국미생물·생명공학회지
    • /
    • 제23권2호
    • /
    • pp.170-177
    • /
    • 1995
  • To search and develop the compounds exhibiting antifungal activities against the mycelial phase of Candida albicans, approximately 2,900 microorganisms isolated from soil were examined for antifungal activity. Among them, a strain with preferential activity against the mycelial phase of Candida albicans was isolated and identified as Streptomyces sp. A393. Isolation and purification of compounds A393 showing antifungal activity against the mycelial phase of C. albicans were performed using XAD-7 column chromatography, silica gel chromatography, preparative thin- layer silica gel chromatography, and HPLC. The molecular weights of compounds isolated from Streptomyces sp. A393 were determined as 774, 790, 804 and 820. These compounds appeared to have a structure of macrolide antibiotics, oligomycin A, B, C and E. Especially, oligomycin E, which is formerly reported to have no antifungal activity, showed antifungal activity against the mycelial phase of Candida albicans.

  • PDF

Melittin-Hybrid 합성 펩타이드가 Fusarium oxysporum의 성장에 미치는 저해효과

  • 이동건;신송엽;이성구;이명규;함경수
    • 한국미생물·생명공학회지
    • /
    • 제24권5호
    • /
    • pp.529-533
    • /
    • 1996
  • Melittin (ME) from honeybee venom has a broad range of strong antimicrobial activity, but it has hemolytic activity against eukaryotic cells. In order to design peptides with powerful antifungal activity without cytotoxic property of ME and understand structure-antifungal activity relationships, the hybrid peptides derived from the sequences of ME and cecropin A (CA) or magainin 2 (MA), MA(10-17)ME(1-12) and CA(1-8)ME(1-12). were synthesized by solid phase method. MA(10-17)ME(1-12) showed potent antifungal activity comparable to ME against Fusarium oxysporum with no hemolytic activity against human red blood cells. The hybrid peptides showed strong inhibi- tion of (1, 3)-$\beta$-D-glucan synthase. This result indicates that the antifungal activity of the hybrid peptides against Fusarium oxysporum is attributed to the inhibition of cell wall synthesis. The results therefore showed a successful design of a peptide having antifungal activity without hemolytic property.

  • PDF

Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67

  • Lee, Kwang Youll;Kong, Hyun-Gi;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제28권4호
    • /
    • pp.373-380
    • /
    • 2012
  • Burkholderia pyrrocinia CH-67 is a biocontrol bacterium with strong antifungal activity against several plant pathogenic fungi. Transposon mutagenesis was performed to identify the genes responsible for the antifungal activity of B. pyrrocinia CH-67. Of the 2,500 mutants tested using the Fulvia fulva spore screening method, a mutant deficient in antifungal activity, M208, was selected. DNA sequence analysis of the transposon-inserted region revealed that a gene encoding an adenylate kinase-related kinase was disrupted in M208. Antifungal activity was restored in M208 when a full-length adenylate kinase gene with its promoter was introduced in trans. The deduced amino acid sequence of adenylate kinase from CH-67 was 80% identical to that of B. cenocepacia MCO-3. Adenosine diphosphate supplementation or high levels of adenosine triphosphate and adenosine monophosphate together restored antifungal activity in M208, suggesting that adenylate kinase of B. pyrrocinia CH-67 is involved in antifungal activity expression.

Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

  • Huh, Chang Ki;Hwang, Tae Yean
    • Preventive Nutrition and Food Science
    • /
    • 제21권1호
    • /
    • pp.52-56
    • /
    • 2016
  • This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not $H_2O_2$. The molecular weights of the antifungal substances were ${\leq}3,000Da$. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.