• Title/Summary/Keyword: antifoamer

Search Result 25, Processing Time 0.02 seconds

Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 강도 특성)

  • Joo, Myung-Ki;Lee, Youn-Su;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.312-315
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content, regardless of the antifoamer content. However, the compressive strength of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF

The Effects of HLB Value of the Surfactants Added in the Silicon Oil Emulsion Antifoamer on the Antifoaming Ability (실리콘오일 에멀젼 소포제 조성에 있어서 유화제의 HLB가 소포성능에 미치는 영향)

  • Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.223-232
    • /
    • 2010
  • The effects of HLB value of nonionic mixed surfactants on the stability and antifoaming ability for silicon oil type emulsions were studied. To obtain a stable silicone emulsions, a higher HLB values and higher content of surfactants were preferred. To obtain a good antifoaming ability, however, a lower HLB value (more hydrophobic) and a lower content of the surfactants were preferred. It was observed, at lower HLB values(8 or 9), that the silicone oil drops were spreaded on the foam surface and effectively reduced the surface tension. And the spreading phenomena presumably acted as an antifoaming mechanism. Therefore, a higher hydrophobicity of the silicone oil emulsion resulted in a higher ability of antifoaming action.

Durability of High-fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 고유동 폴리머 시멘트 모르타르의 내구성)

  • Joo Myung-Ki;Lee Youn-Su;Youn Do-Yong;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.703-708
    • /
    • 2005
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As the result, the setting time of the polymer-modified mortars using redispersible polymer powder tends to be delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption, chloride ion penetration depth and carbonation depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Strength Development and Permeability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 강도 및 투수특성)

  • 윤경구;홍창우;이주형;최상릉
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.299-306
    • /
    • 2002
  • The purpose of this research was to develop a rapid setting cement latex modified concrete (RSLMC) for bridge deck repairing and overlaying. The main experimental variables were latex contents, antifoamer contents and water-cement ratioes. The workability, strength development and permeability were measured as responses. The results showed that latex content increased the slump and reduced the unit water required for same workability. The air contents were measured as 8.0∼9.0% and 2.0∼3.0% without antifoamer and with 1.6∼3.2% of antifoamer, respectively. This resulted in the increment of compressive strength development by 10∼20 %. The flexural strength of RSLMC increased greatly as the latex content increased, but not in compressive strength. The compressive strength and flexural strength developed enough for opening the overlayed RSLMC to the traffic after 3 hours of RSLMC placement. The permeability of RSLMC was evaluated as negligible due to its very low charge passed. Thus, RSLMC could be used at repairing or overlaying the concrete bridge deck at fast-track job sites.

Development of Strength and Durability Properties of Latex-Modified Concrete with Rapid-Setting Cement (초속경 시멘트를 사용한 라텍스 개질 콘크리트의 강도발현 및 내구특성)

  • 최성욱;홍창우;김동호;최상릉;장홍균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1029-1034
    • /
    • 2001
  • The purpose of this research is to develop rapid setting cement latex modified concrete (RSLMC) which will be used to overlay bridge deck for maintaining and repairing. The main experimental variables were the types of rapid setting cement and variation of latex and antifoam agent contents were selected as admixture factor, then the properties of workability and strength development and durability properties were investigated. The results of this study show that latex content give increment of a slump due to surface tension in polymer particles and reduce unit weight of water for preservation of workability. In addition, When no and 1.6~3.2% antifoam agent were mixed, 8%, 2.0~3.8% were respectively obtained. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. Rapid chloride permeability and freezing-thawing test carried out. As a results, according to increment of containing ratio antifoamer, strength of RSLMC increase, permeability showed lower value than ignorable 100 coulombs. Also, in the case of more than antifoamer 1.6%, the relativity dynamic modulus is mantained more than 90%, but in case of 0, 5%, it decrease. In consequence, with the view of strength and workability of RSLMC, it is considered that appropriate content ratio of antifoam agent and latex solid are respectively 1.6% by latex weight, 15% by cement weight.

  • PDF

Durability of Latex-Modified Concrete with Rapid-Setting Cement (초속경시멘트를 이용한 라텍스개질 콘크리트의 내구특성)

  • Yun, Kyong-Ku;Jung, Won-Kyong;Choi, Sang-Reung;Kim, Dong-Ho;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.1-8
    • /
    • 2002
  • Latex modified concrete(LMC) became to be applied as a new material for newly constructed bridge deck overlays in Korea due to its excellent bond strength, flexural strength and impermeability against water and chloride. However, it could not be adopted at repair job site because of its long curing time required. Thus, a research on latex modified concrete with rapid-setting cement(RSLMC) is necessary if it could develope the sufficient strength for early opening to traffic. This study focused on the durability of latex modified concrete with rapid-setting cement mainly on water permeable resistance and freeze-thaw resistance. The main experimental variables were latex contents(0, 5, 10, 15 and 20%) and antifoamer contents (0, 1.6, 3.2, 4.8 and 6.4%). Test results show that the permeability of RSLMC is very low indicating below 100 coulombs at 15% of latex contents at all antifoamer contents. The freeze-thaw resistance of RSLMC maintains above 90% of relative dynamic modulus at 3.2% of antifoamer content until 300 freezing-thawing cycles.

  • PDF

Drying Shrinkage and Strength Properties of Polymer-Modified Mortars Using Redispersible Polymer Powder (재유화형 분말수지 출입 폴리머 시멘트 모르타르의 건조수축 및 강도특성)

  • Yeon, Kyu-Seok;Joo, Myung-Ki;Lee, Hyun-Jong;Jin, Xing-Qi;Lee, Chi-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.51-60
    • /
    • 2006
  • This study was conducted to investigate experimentally the drying shrinkage and the strength properties of redispersible SBR and PAE powder-modified mortars. Polymer-cement ratio, content of shrinkage-reducing agent and antifoamer content were manipulated as the experimental variables. The peculiarity of this study is to obtain a high early-age strength by using the portland cement and alumina cement with the ratio of 8 : 2. Until 7 days of age, the drying shrinkage remarkably increased up to $1\~2\times10^{-4}$, while it tended to decrease as the ratio of polymer to cement ratio and the content of shrinkage-reducing agent increased. Polymer-cement ratio was effective in improving the flexural, tensile and adhesive strengths: As the ratio increased, the strengths correspondingly increased. The flexural strength was in the range of $7\~11$ MPa, the tensile strength was $3.5\~5$ MPa and the adhesive strength was $1.2\~3.9$ MPa. On the other hand, the compressive strength tended to decrease as the polymer-cement ratio increased, and it was in the range of $23\~39$ MPa. All strengths, flexural, tensile, adhesive and compressive strengths, decreased as the content of powder shrinkage-reducing agent increased. It turned out that the polymer-cement ratio influenced more on the behavior of drying shrinkage and the properties of strength than the powder shrinkage-reducing agent did.

Preparation of Concrete Admixtures from Pine Bark Wasts(II) -Conversion of Spent Liquor Obtained from Alkaline Sulfite- Anthraquinone(ASAQ) Cooking of Pine Bark Waste to Normal and Accelerating Concrete Admixtures- (폐 소나무 수피로부터 콘크리트 혼화제의 제조(II) - 소나무 수피 ASAQ증해 폐액의 표준형 및 촉진형 콘크리트 혼화제로의 전환 -)

  • 박성천;문성필;문소현;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.747-750
    • /
    • 1998
  • The application of spent liquor(BSL) obtained from alkaline sulfite-anthraquinone cooking of pine bark to cement mortar significantly improved the water-reducing ability and decreased the rate of cement hardening. However, the compressive and flexural strength of BSL addition to cement mortar were lower than that of PLAIN. The application of 0.2% antifoamer to BSL slightly decreased water-reducing ability, but remarkably improved the compressive and flexural strength of cement mortar. On the other hand, BSL decreased the rate of hardening of cement, which exhibited the protperties of the lignosulfonated based retarding water-reducing type. but the setting time of cement could be controlled by addition of Na2CO3 could be used to convert BSL to normal or accelerating concrete admixtures.

  • PDF

Cultural Conditions of Heavy Metal-ion Tolerant Microorganism and Accumulation of Heavy Metal-ion into the Cells. (중금속내성균주의 배양조건 및 균체내 축적)

  • Yu, Tae-Shick;Song, Hyung-Ik
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.59-64
    • /
    • 1981
  • The cultural conditions and the intra cellular accumulation of cadmium was studied using a cadmium tolerant yeast strain B-7 which had been isolated from activated sludge collected from a zinc mining area. The organism was able to grow in a medium containing 3,000 $\mu\textrm{g}$/$m\ell$ of cadmium-ion. (C $d^{++}$) Optimum conditions for the growth of the organisms were 20~22$^{\circ}C$ and pH 5.0~8.0 under aerobic condition. The maximum cadmium accumulation was observed when the organism was grown at pH 6.0. The growth of B-7 was not affected by the addition of a silicone-based antifoamer, which stimulated the intra cellular accumulation of cadmium. The intra cellular cadmium accumulation started after the cell ceased to grow. One gram of cells accumulated 34.17mg of cadmium when the organism was grown in a medium containing 500 $\mu\textrm{g}$/$m\ell$ of cadmium and 0.2%, v/v silicone-based antifoamer at 28$^{\circ}C$ for 48 hours with shaking. About 73 % of the accumulated heavy metal by the organism was found in the cytoplasm.m.

  • PDF