• Title/Summary/Keyword: antiferromagnet

Search Result 60, Processing Time 0.019 seconds

Spin Transfer Torque in Ferromagnet-Normal Metal-Antiferromagnet Junctions

  • Lee, Hyun-Woo;Yang, Hyun-Soo
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.92-96
    • /
    • 2011
  • This study investigated theoretically the properties of the spin transfer torque acting on a ferromagnet in a ferromagnet-normal metal-antiferromagnet junction. Earlier work showed that the angular dependence of the spin transfer torque can be a wavy-type if the junction satisfies a special symmetry. This paper reports a simple model analysis that allows a derivation of the wavy angular dependence without taking advantage of the symmetry. This result suggests that the wavy angular dependence can appear even when the symmetry is broken. As an illustration, the angular dependence was calculated as a function of the degree of the compensation at the normal metal-antiferromagnet interface. The implications of the result for the current-induced magnetization precession are discussed.

Ferromagnetic Resonance Frequency of Patterned Synthetic Antiferromagnet

  • Gong, Yo-Chan;Im, Sang-Ho;Lee, Gyeong-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.57-58
    • /
    • 2008
  • 외부 자기장이 spin-flip field보다 작은 조건 하에서 마이크로 사이즈로 패턴된 synthetic antiferromanet의 ferromagnetic resonance frequency를 표현할 수 있는 이론식을 유도했다. 또한 유도된 이론식을 통해 synthetic antiferromagnet의 기하학적, 자기적 성질이 ferromagnetic resonance frequency가 미치는 영향에 대해 연구했다.

  • PDF

Micromagnetic Modeling of Spin-valve MR Head with Synthetic Antiferromagnet (SyAF)

  • Tahk, Y.W;Lee, K.J;Lee, T.D
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.55-58
    • /
    • 2002
  • MR transfer behaviors of the permanent magnet biased spin valve MR sensors with SyAF (synthetic antiferromagnet) layers were studied by micromagnetics modeling. For narrow track MR heads, various height to width ratios were considered together with strength of permanent magnets which stabilities the free layed As the MR sensor width is reduced to $0.12 \mu{m}$, sensor height less than 0.09 ${\mu}{\textrm}{m}$ is needed to show good linearity and the Mr.t of permanent magnets smaller than 0.2 memu/$cm^2$ is sufficient for the domain stabilization. The conditions for single domain behavior of the free layer were also investigated through optimizing the biasing strength of permanent magneto the shield gap and the aspect ratio of MR sensor.

Numerical Study on Current-Induced Switching of Synthetic Antiferromagnet

  • Lee, Seo-Won;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Synthetic antiferromagnets (SAFs) are used as free layer structures for various magnetic devices utilizing spintransfer torque (STT). Therefore, it is important to understand current-induced excitation of SAFs. By means of drift-diffusion and macrospin models, we studied the current-induced excitation of a SAF-free layer structure (NiFe/Ru/NiFe). The simulation results were compared with the previous experimental results [N. Smith et al., Phys. Rev. Lett. 101, 247205 (2008)]. We confirmed that a nonzero STT through the Ru layer is essential for explaining the experimental results.

Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures

  • Kim, Dong-Jun;Park, Jin-Seok;Ryu, Ho Jin;Jeong, Jong-Ryul;Chung, Chang-Kyu;Park, Byong-Guk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.159-163
    • /
    • 2016
  • Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and $1{\sim}5{\times}10^{14}ions/cm^2$. We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.