• Title/Summary/Keyword: anticancer drug delivery

Search Result 51, Processing Time 0.026 seconds

Synthesis and Characterization of the Tumor Targeting Mitoxantrone-Insulin Conjugate

  • Liu, Wen-Sheng;Yuan-Huang;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.892-897
    • /
    • 2003
  • Anticancer drugs have serious side effects arising from their poor malignant cells selectivity, Since insulin receptors highly express on the cytomembrane of some kind of tumor cells, using insulin as the vector was expected to reduce serious side effects of the drugs. The objective of this study was to evaluate the tumor targeting effect of the newly synthesized mitoxantrone-insulin conjugate (MIT-INS) with the drug loading of 11.68%. In vitro stability trials showed MIT-INS were stable in buffers with different pH (2-8) at $37^{\circ}C$ within 120 h (less than 3% of free MIT released), and were also stable in mouse plasma within 48 h (less than 1 % of free MIT released). In vivo study on tumor-bearing mice showed that, compared with MIT [75.92 $\mu g \cdot$ h/g of the area under the concentration-time curve (AUC) and 86.85 h of mean residence time (MRT)], the conjugates had better tumor-targeting efficiency with enhanced tumor AUC of 126.53 1l9 h/g and MTR of 151.95 h. The conjugate had much lower toxicity to most other tissues with targeting indexes ($TI^c$) no larger than 0.3 besides good tumor targeting efficiency with $TI^c$ of 1.67. The results suggest the feasibility to promote the curative effect in ca.ncer chemotherapy by using insulin as the vector of anti-cancer drugs.

Preparation and Destabilization of Target-Sensitive Liposomes (표적 민감성 리포좀의 제조와 약물 방출)

  • 양진모;양지원김종득최태부
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 1995
  • Target-sensitive(TG-S) liposomes, which have the antibodies coupled on the surface of liposome and can release their entrapped contents by the binding of antibodies with the specigic target cells, were prepared and employed to study the release of calcein and the selective delivery of an anticancer agent, doxorubicin(DOX). The monoclonal antibody, Y3, used for the preparation of the TG-S liposome was one against major histocompatibility complex class 1 of mouse(MHCI, H-2Kbtype) and the target cells were EL-4 and RMA, which have the MHC1, H-2Kbtype on their membrane surfacem. The release of calcein from TG-S liposome occurred when the target cells were contacted with liposomes and it was proportionally increased with the rise of binding capacity of antibody coupled on the surface of liposome to the target cells. The experimental results of drug delivery were similar to the cases of calcein release. The viability of specific target cell, EL-4 with liposomal DOX was not so different from that with the free DOX, while for the non-specific target cell, Yacl(H-2Kf), the cell viability with Iiposomal DOX was much higher than that with free DOX. This shows the fact that the liposomal DOX can be efficiently delivered to the specific target cells, while it was not the case for the non-specific target cells. And the drug delivery was lnhibited when the free antibody of Y3 was added in the contact process between EL-4 and TG-S liposomes, which means the drug delivery occurred mainly by the destabilization of TG-S liposomes. From these results, we could conclude that the selective drug delivery to specific target cell using the TG-S liposome would be feasible.

  • PDF

Anticancer Loaded Multi-wall Carbon Nanotube for Targeting Tumors

  • Wang, Wenping;Choi, Jung-Il;Kang, Sang-Soo;Nam, Tae-Hyun;Khang, Dong-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • Flat form technology for constructing anticancer loaded multi-walled carbon nanotubes (mwCNTs) was introduced in this study. Conventional anticancer drugs, such as MTX (Methotrexate), cisplatin, DOX (Doxorubicin hydrochloride), DAU (Daunorubicin) and EPI (epirubicin) were bio-conjugated with folic acid (FA) for selective targeting tumor cells. Loading efficiencies of the used anticancer drugs on mwCNTs have shown different order of bindings depending on the molecular bind affinity of NH (amine) formation on mwCNTs. MTT assays have shown increased selective target efficiency of FA conjugated mwCNTs on breast cancer cell growth inhibition. All results collectively indicated promising application of mwCNTs as a smart inorganic nanomaterial for selective targeting drug delivery vehicle at tumor tissues.

  • PDF

Preparation and Characterization of Deoxycholic Acid-Grafted Hyaluronic Acid as a Durg Carrier (약물전달체로서 디옥시콜산이 결합된 히알루론산의 제조와 특성)

  • Choi, Chang-Yong;Park, Jun-Kyu;Kim, Won-Suk;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • To develop hyaluronic acid (HA)-based anticancer agent carrier, hyaluronic acid was chemically modified with the hydrophobic group of deoxycholic acid(DA). The physicochemical properties of the deoxycholic acid-conjugated HA (HADA) were investigated by using $^1H$ NMR, FTIR spectrophotometer and TEM. Paclitaxel (Tx)-loaded HADA nanoparticles were prepared by a dialysis method. The loading efficiency of drug and drug contents of Tx-loaded HADA nanoparticles (HADA-Tx) were measured by HPLC. The anticancer activity of HADA-Tx was investigated by its cytotoxicity against KB cell in vitro. The HADA-Tx was shown to have the superior potential for the anticancer drug delivery.

Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier (다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰)

  • Jeong, Gyeong-Won;Nah, Jae-Woon;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.404-409
    • /
    • 2017
  • Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine ($-NH_2$) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.

Isomeric Folate-Conjugated Polymeric Micelles Bind to Folate Receptors and Display Anticancer Effects

  • Dong, Qing;Xie, Zuo-Xu;Xie, Cao;Lu, Wei-Yue;Zhang, Qian;Li, Xue;Liu, Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7363-7369
    • /
    • 2014
  • The present study aimed to prepare and evaluate polymeric micelles conjugated with folic acid through ${\alpha}$- or ${\gamma}$-carboxyl groups for antitumor efficacy. The isomeric block copolymers, ${\alpha}$- and ${\gamma}$-folate-polyethyleneglycol-distearoyl phosphatidylethanolamine (${\alpha}$- and ${\gamma}$-Fol-PEG-DSPE), were produced by solid phase peptide synthesis. Three types of doxorubicin (DOX)-loaded polymeric micelles (MPEG-DSPE-DOX and ${\alpha}$- / ${\gamma}$-Fol-PEG-DSPEDOX micelles) were prepared via the film formation method. Compared with MPEG-DSPE-DOX micelles, the ${\alpha}$- / ${\gamma}$-Fol-PEG-DSPE-DOX micelles presented a higher cellular uptake behavior in the live cell study. Cell viability percentages were 81.8%, 57.3%, 56.6% at 2 hours for MPEG-DSPE-DOX, ${\alpha}$- and ${\gamma}$-Fol-PEG-DSPE-DOX micelles, respectively (p<0.05). Using the KB xenograft tumor model, both ${\alpha}$- and ${\gamma}$-folate-conjugated micelles were found to have better antitumor effects with lower toxicity in comparison with MPEG-DSPE-DOX micelles. No difference in in vivo antitumor efficacy was found between ${\alpha}$- and ${\gamma}$-Fol-PEG-DSPE-DOX micelles. The folate-conjugated micelles might be a potentially useful strategy for tumor targeting of therapeutic agents, whether grafting with folic acid through ${\alpha}$- or ${\gamma}$-carboxyl groups.

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Buccal Transport of Paclitaxel using Ethanol and Glyceryl Monooleate

  • Lee, Yoon-Jin;Kang, Myung-Joo;Park, Young-Mi;Choi, Young-Wook;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.311-314
    • /
    • 2007
  • Paclitaxel (PTX) is an antineoplastic agent approved for the treatment of ovarian and breast carcinomas. However, the use of paclitaxel as an anticancer drug is limited by its extremely poor water solubility (below $0.3\;{\mu}g/mL$). Furthermore, it has very low bioavailability when administered orally because paclitaxel is a substrate of P-glycoprotein (P-gp) efflux pump. In this study, buccal delivery of PTX was investigated as one of the alternatives for PTX delivery. Ethanol and glyceryl monooleate (GMO) were selected as permeation enhancing agents to increase solubility and permeation across buccal mucosa of PTX. At the different concentrations of ethanol solution ($30{\sim}70\;w/w\;%$), PTX permeation was studied, followed effects of GMO in the concentration range of $2.5{\sim}25%$ with ethanol vesicle. The transbuccal ability of PTX was evaluated in vitro using Franz diffusion cells mounted with rabbit buccal mucosa. As a result, incorporation of PTX into ethanol vesicle with GMO significantly enhanced the PTX permeation in rabbit buccal mucosa. Particularly, the mixtures of ethanol:water:GMO at the ratio of 50:47.5:2.5 showed the most excellent enhancing ability. The results showed a promising possibility for buccal delivery of PTX.

Effect of Drug Loading on the Physicochemical Properties and Stability of Cationic Lipid-based Plasmid DNA Complexes

  • Jeong, Ui-Hyeon;Jung, Ji-Hye;Davaa, Enkhzaya;Park, Se-Jin;Myung, Chang-Seon;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.339-343
    • /
    • 2009
  • Recently, co-delivery of drug and gene has been attempted for higher therapeutic effects of anticancer agents. In this study, cationic liposomes were prepared using 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP) as a cationic lipid to investigate the effect of drug loading on the physicochemical characteristics of cationic liposomes/DNA complexes. The complex formation between cationic liposomes and negatively charged plasmid DNA was confirmed and the protection from DNase was observed. Particle size of complexes was reduced not by drug loading, but by the increased ratio of cationic lipid to plasmid DNA. Meanwhile, zeta potential of complex was increased by the addition of cationic liposomes to complexes and the effect of drug loading on the zeta potential was not much higher than on particle size. Gel retardation of complexes was indicated when the complexation weight ratios of cationic lipid to plasmid DNA were higher than 24:1 for drug free complexes and 20:1 for drug loaded ones, respectively. Agarose gel retardation showed the similar complexation between plasmid DNA and drug free liposomes or drug loaded liposomes. Both complexes protected plasmid DNA from DNase independent of complexation temperature. From the results, drug loading may affect not the complex formation of cationic liposomes and plasmid DNA, but the particle size of complex.

Release of Cytarabine from $Poly({\varepsilon}-carbobenzoxy\;L-lysine)$/Poly(ethylene oxide)/Poly({\varepsilon}-carbobenzoxy\;L-lysine)$ Block Copolymer Microspheres ($Poly({\varepsilon}-carbobenzoxy\;L-lysine)$/Poly(ethylene oxide)/$Poly({\varepsilon}-carbobenzoxy\;L-lysine)$ 블록 공중합체 미립자에서 Cytarabine의 방출특성)

  • Cho, Chong-Su;Kwon, Joong-Kuen;Jo, Byung-Wook;Lee, Kang-Choon;Sung, Yong-Kiel
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.323-326
    • /
    • 1992
  • $Poly({\varepsilon}-carbobenzoxy\;L-lysine)/poly(ethylene oxide)/poly({\varepsilon}-carbobenzoxy\;L-lysine)$ (LEL) block copolymers containing $poly({\varepsilon}-carbobenzoxy\;L-lysine)$ (PCLL) as the A component and poly(ethylene oxide) (PEO) as the B component were investigated as drug delivery matrix. PCLL homopolymer and LEL block copolymer microspheres containing anticancer drug, cytarabine, were prepared by a solvent evaporation process and the release patterns of cytarabine from the microspheres were investigated in vitro. The size of PCLL homopolymer and LEL block copolymer microspheres was ranged from $0.2\;{\mu}m$ to $1\;{\mu}m$ in diameter and the shape of the microspheres was almost round. The release pattern of cytarabine from the block copolymer microspheres was dependent on the mole % of PEO of the block copolymers.

  • PDF