• Title/Summary/Keyword: anticancer activity and apoptosis

Search Result 288, Processing Time 0.025 seconds

Korean Mistletoe Lectin-induced Apoptosis in Hepatocarcinoma Cells is Associated with Inhibition of Telomerase via Mitochondrial Controlled Pathway Independent of p53

  • Park, Won-Bong;Lyu, Su-Yun;Choi, Sang-Ho
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • The extract of European mistletoe ( Viscum album, L) has been used in adjuvant chemotherapy of cancer and mistletoe lectins are considered to be major active components. The present work was performed to investigate the effects of Korean mistletoe lectin (Viscum album L. coleratum agglutinin, VCA) on proliferation and apoptosis of human hepatoma cells as well as the underlying mechamisns for these effects. We showed that VCA induced atoptosis in both SK-Hep-1 and Hep 3B (p53-negative) cells through p53- and p21 -independent pathways. VCA induced apoptosis by down-regulation of Bcl-2 and by up-regulation of Bax functioning upstream of caspase-3 in both cell lines. In addition, we observed down-regulation of telomerase activity in both VCA-treated cells. Our results provide direct evidence of the anti-tumor potential of this biological response which comes from inhibition of telomerase and consequent inducing apoptosis. VCA-induced apoptosis is regulated by mitochondria controlled pathway independently of p53. These findings are important for the therapy with preparation of mistletoe because they show that telomerase-dependent mechanism can be targeted by VCA in human hepatocarcinoma. Taken together, our results suggest that the VCA, considered as a telomerase-inhibitor, can be envisaged as a candidate for enhancing sensitivity of conventional anticancer drugs.

Atractylodes japonica Rhizome Inhibits Cell Proliferation and Induces Apoptosis in vitro

  • Choi, Eun-Jeong;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.1019-1021
    • /
    • 2009
  • Antiproliferative activity of the ethanol extract of Atractylodes japonica rhizomes (AJEX) was investigated using methyl thiazolyl tetrazolium (MTT) assays with various cancer cell lines (HL-60, MCF-7, SK-Br-3, MDA-MB-453, HepG2, Hep3B, PC-3, LNCaP, MKN 28, MKN 45, and HT-29 cells). Gastric carcinoma cell lines were the most responsive in terms of cell proliferation. The $IC_{50}$ of MKN 28 and MKN 45 cells were 35.98 and 27.57 ${\mu}g/mL$, respectively. Moreover, gastric carcinoma cells exposed to AJEX underwent apoptosis, as determined by Annexin V binding assay. Compared to respective control level, exposure to the AJEX at each $IC_{50}$ concentration resulted in a remarkable increase in the shift of cell populations. Present results suggest that AJEX possess potential anticancer properties.

The Anticancer Effects and Immune Response on the Metastatic Lung Cancer by Wanpae-tang (완폐탕의 실험적 폐전이암에 대한 항암 및 면역효과에 관한 연구)

  • Lee Seon Goo;Lee Dong Joo;Yoon Keun Chan;Ha Jee Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.711-718
    • /
    • 2003
  • Wanpae-tang is suggested to have antitumor activity on lung cancer. This study was performed to investigate antitumor, immune response, and apoptotic effects by Wanpae-tang in the cancer cell lines and C57BL/6 mice. Experimental studies were progressed through the anticancer activities such as, survival time, cell cytotoxicity, natural killer cell activity, productivity of interleukins and apoptotio effects. The results were summarized as follows: 1. Median survival time of Wanpae-tang treated group was prolonged to 4.1%, as compared with control group, but was not significant. 2. On the MTT assay, half-maximal inhibitory concentration(IC50) of Wanpae-tang was 15.00 ㎎/㎖ in HeLa cell, and 4.158 ㎎/㎖ in HRT-18 cell. 3. Natural killer cell activity in Wanpae-tang treated group was decreased in case of 100:1 and 10:1 effect cell/target cell ratio. 4. Production of interleukin-2, 4, 12 in Wanpae-tang treated group were significantly increased. 5. On the studies of Wanpae-tang induced apoptosis, a DNA fragmentation patterns were not appeared.

Oleuropein Induces Apoptosis Via the p53 Pathway in Breast Cancer Cells

  • Hassan, Zeinab Korany;Elamin, Maha Hussein;Omer, Sawsan Ali;Daghestani, Maha Hassan;Al-Olayan, Ebtesam Salah;Elobeid, Mai AbdelRahman;Virk, Promy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6739-6742
    • /
    • 2013
  • Background: Breast cancer is a major health problem worldwide. Olive oil induces apoptosis in some cancer cells due to phenolic compounds like oleuropein. Although oleuropein has anticancer activity, the underlying mechanisms of action remain unknown. The study aimed to assess the mechanism of oleuropin-induced breast cancer cell apoptosis. Materials and Methods: p53, Bcl-2 and Bax gene expression was evaluated by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in luminal MCF-7 cells. Results: Oleuropein-induced apoptosis was accompanied by up-regulation of both p53 and Bax gene expression levels and down-regulation in Bcl2. Conclusions: Oleuropein induces apoptosis in breast tumour cells via a p53-dependent pathway mediated by Bax and Bcl2 genes. Therefore, oleuropein may have therapeutic potential in breast cancer patients by inducing apoptosis via activation of the p53 pathway.

Esculetin Suppresses the Growth and Proliferation of A431 Skin Cancer Cells via the MAPKs Pathway (A431 skin cancer cell에서 Esculetin의 MAPKs pathway를 통한 항암 효과)

  • Jin Young, Sung;Yong Min, Kim
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.4
    • /
    • pp.181-191
    • /
    • 2022
  • As the incidence of skin cancer increases every year, non-surgical treatment methods for cancer are being sought. Esculetin, a natural dihydroxy coumarin, is attracting attention as a therapeutic agent for certain diseases, such as cancer, based on its broad pharmacological activity. In this study, the anticancer ability of esculetin was evaluated using the epidermoid carcinoma cell line A431. As a result of evaluating the apoptosis ability of esculetin by MTT assay, apoptosis was observed in a time-concentration-dependent manner regardless of the presence or absence of FBS. As a result of quantitative real-time PCR, esculetin reduced cyclin D1 mRNA in a time-concentration-dependent manner. In addition, as a result of western blotting, esculetin significantly inhibited phosphorylation of ERK, JNK, and p38 in a concentration-dependent manner. The results of this study suggest that esculetin has the potential to be used as an effective natural medicine for the treatment of skin cancer.

Cultivated Orostachys japonicus Induces Apoptosis in Human Colon Cancer Cells (인체 대장암 세포주 SW480에서 재배 와송의 세포 사멸 유도 효과)

  • Kim, Jae-Yong;Jung, Eun-Jung;Won, Yeong-Seon;Lee, Ju-Hye;Shin, Dong-Young;Seo, Kwon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.317-323
    • /
    • 2012
  • This study was performed to elucidate the anticancer activities and the mechanism of chloroform fractions from cultivated Orostachys japonicus (CFCOJ) in human colon cancer cells. CFCOJ markedly decreased viable cell numbers in both a dose-dependent and time-dependent manner within SW480 cells. Cell death induced by CFCOJ increased cell populations in the sub-G1 phase, as well as the formation of apoptotic bodies, nuclear condensation, and induced DNA fragmentation. CFCOJ-induced apoptosis was associated with the activation of initiator caspase-8 and -9, as well as the effector caspase-3. CFCOJ also stimulated Bid cleavage, indicating that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. CFCOJ increased the expression of the proapoptotic protein, Bax, and decreased the expression of the antiapoptotic protein, Bcl-2. These results indicate that CFCOJ exert anticancer effects on human colon cancer SW480 cells through a caspase-dependent apoptotic pathway.

Synergistic Effect of Flavonoids from Artocarpus heterophyllus Heartwoods on Anticancer Activity of Cisplatin Against H460 and MCF-7 Cell Lines

  • Daud, Nik Nurul Najihah Nik Mat;Septama, Abdi Wira;Simbak, Nordin;Bakar, Nor Hidayah Abu;Rahmi, Eldiza Puji
    • Natural Product Sciences
    • /
    • v.25 no.4
    • /
    • pp.311-316
    • /
    • 2019
  • Artocarpus heterophyllus has been used as traditional medicine. This plant is one of the sources of flavonoid. Flavonoid compounds possessed a wide range of biological properties including anticancer. This study was performed to investigate the cytotoxic effect of flavonoids from A. heterophyllus on H460 and MCF-7 cell lines. The interaction of flavonoids and cisplatin against tested cancer cells was also evaluated. MTT assay was used to determine the cytotoxic effect of flavonoid. Isobologram analysis was selected to evaluate the synergistic effect between flavonoid and cisplatin, their interaction was then confirmed using AO/PI staining method. Amongst of flavonoid compounds, artocarpin exhibited strong cytotoxic effect on both MCF-7 and H460 cell lines with IC50 values of 12.53 ㎍/mL (28.73 μM) and 9.77 ㎍/mL (22.40 μM), respectively. This compound enhanced anticancer activity of cisplatin against H460 and MCF-7. The combination produced a synergistic effect on H460 and MCF-7 cell lines with a combination index (CI) values of 0.2 and 0.18, respectively. The AO/PI stained demonstrated that the combination of artocarpin and cisplatin caused morphological changes that indicated apoptosis. Moreover, artocarpanone also significantly increased cytotoxic effect of cisplatin compared to its single concentration with CI below than 1. This result suggested the potency of flavonoid named artocarpin to enhance the anticancer activity of cisplatin on H460 and MCF-7 cell lines.

Alyssin and Iberin in Cruciferous Vegetables Exert Anticancer Activity in HepG2 by Increasing Intracellular Reactive Oxygen Species and Tubulin Depolymerization

  • Pocasap, Piman;Weerapreeyakul, Natthida;Thumanu, Kanjana
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.540-552
    • /
    • 2019
  • To determine the chemopreventive potential of alyssin and iberin, the in vitro anticancer activities and molecular targets of isothiocyanates (ITCs) were measured and compared to sulforaphane in hepatocellular carcinoma cell HepG2. The SR-FTIR spectra observed a similar pattern vis-a-vis the biomolecular alteration amongst the ITCs-treated cells suggesting a similar mode of action. All of the ITCs in this study cause cancer cell death through both apoptosis and necrosis in concentration dependent manner ($20-80{\mu}M$). We found no interactions of any of the ITCs studied with DNA. Notwithstanding, all of the ITCs studied increased intracellular reactive oxygen species (ROS) and suppressed tubulin polymerization, which led to cell-cycle arrest in the S and $G_2/M$ phase. Alyssin possessed the most potent anticancer ability; possibly due to its ability to increase intracellular ROS rather than tubulin depolymerization. Nevertheless, the structural influence of alkyl chain length on anticancer capabilities of ITCs remains inconclusive. The results of this study indicate an optional, potent ITC (viz., alyssin) because of its underlying mechanisms against hepatic cancer. As a consequence, further selection and development of effective chemotherapeutic ITCs is recommended.

Differential cytotoxic effects of fenbendazole on mouse lymphoma EL-4 cells and spleen cells

  • Haebeen Jung;You-Jeong Lee;Hong-Gu Joo
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2023
  • Fenbendazole (FBZ) is a benzimidazole anthelmintic widely used to treat parasitic infections. The anticancer effect of FBZ has been recently highlighted leading to its consideration as a potential anticancer agent. Although previous studies have demonstrated the effect of FBZ on cancer cells, there is a paucity of studies on the effect of FBZ on lymphoma cells and normal immune cells. Herein, we investigated the effects of FBZ on a mouse lymphoma cell line, EL-4 cells, and spleen cells, using vincristine as a positive control. The cellular metabolic activity of EL-4 cells was decreased by FBZ, but that of the spleen cells was not decreased. Moreover, FBZ reduced the mitochondrial membrane potential and induced reactive oxygen species production in EL-4 cells, but not in spleen cells. FBZ induced G2/M phase arrest and increased the sub G0/G1 phase ratio, indicating apoptosis. Furthermore, compared to the control cells, the reactivity of spleen cells pretreated with FBZ to lipopolysaccharide was maintained. In summary, FBZ is cytotoxic to EL-4 cells, but not to spleen cells. This study provides experimental evidence that FBZ exerts an anticancer effect, and less cytotoxic effects and functional damage to normal spleen cells.

Luteolin Arrests Cell Cycling, Induces Apoptosis and Inhibits the JAK/STAT3 Pathway in Human Cholangiocarcinoma Cells

  • Aneknan, Ploypailin;Kukongviriyapan, Veerapol;Prawan, Auemduan;Kongpetch, Sarinya;Sripa, Banchob;Senggunprai, Laddawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5071-5076
    • /
    • 2014
  • Cholangiocarcinoma (CCA) is one of the aggressive cancers with a very poor prognosis. Several efforts have been made to identify and develop new agents for prevention and treatment of this deadly disease. In the present study, we examined the anticancer effect of luteolin on human CCA, KKU-M156 cells. Sulforhodamine B assays showed that luteolin had potent cytotoxicity on CCA cells with IC50 values of $10.5{\pm}5.0$ and $8.7{\pm}3.5{\mu}M$ at 24 and 48 h, respectively. Treatment with luteolin also caused a concentration-dependent decline in colony forming ability. Consistent with growth inhibitory effects, luteolin arrested cell cycle progression at the G2/M phase in a dose-dependent manner as assessed by flow cytometry analysis. Protein expression of cyclin A and Cdc25A was down-regulated after luteolin treatment, supporting the arrest of cells at the G2/M boundary. Besides evident G2/M arrest, luteolin induced apoptosis of KKU-M156 cells, demonstrated by a distinct sub-G1 apoptotic peak and fluorescent dye staining. A decrease in the level of anti-apoptotic Bcl-2 protein was implicated in luteolin-induced apoptosis. We further investigated the effect of luteolin on JAK/STAT3, which is an important pathway involved in the development of CCA. The results showed that interleukin-6 (IL-6)-induced JAK/STAT3 activation in KKU-M156 cells was suppressed by treatment with luteolin. Treatment with a specific JAK inhibitor, AG490, and luteolin diminished IL-6-stimulated CCA cell migration as assessed by wound healing assay. These data revealed anticancer activity of luteolin against CCA so the agent might have potential for CCA prevention and therapy.