• Title/Summary/Keyword: anticancer activity and apoptosis

Search Result 288, Processing Time 0.026 seconds

Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies

  • Park, Jun Yeon;Choi, Pilju;Kim, Ho-kyong;Kang, Ki Sung;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Background: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. Methods: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. Results: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of $48{\mu}g/mL$. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. Conclusion: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.

Anti-tumor Effects and Apoptosis Induction by Realgar Bioleaching Solution in Sarcoma-180 Cells in Vitro and Transplanted Tumors in Mice in Vivo

  • Xie, Qin-Jian;Cao, Xin-Li;Bai, Lu;Wu, Zheng-Rong;Ma, Ying-Ping;Li, Hong-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2883-2888
    • /
    • 2014
  • Background: Realgar which contains arsenic components has been used in traditional Chinese medicine (TCM) as an anticancer drug. However, neither Realgar nor its formula are soluble in water. As a result, high dose of Realgar has to be administered to achieve an effective blood medicine concentration, and this is associated with adverse side effects. The objective of the present study was to increase the solubility of a formula using hydrometallurgy technology as well as investigating its effects on in vitro and in vivo cell proliferation and apoptosis in Sarcoma-180 cell line. Materials and Methods: Antiproliferative activity of Realgar Bioleaching Solution (RBS) was evaluated by MTT assay. Further, effects of RBS on cell proliferation and apoptosis were studied using flow cytometry and transmission electron microscopy. Kunming mice were administered RBS in vivo, where arsenic specifically targeted solid tumors. Results: The results indicated that RBS extract potently inhibited the tumor growth of Sarcoma-180 cell line in a dose-dependent manner. Flow cytometry and transmission electron microscopy further indicated that RBS significantly induced cell apoptosis through the inhibition of cell cycle pathway in a dose-dependent manner. Further, on RBS administration to mice, arsenic was specifically targeted to solid tumor.s Conclusions: RBS could substitute for traditional Realgar or its formula to work as a potent tool in cancer treatment.

Anticancer effect of Rheum Rhizoma on human liver cancer HepG2 cells (간암 세포주 HepG2에 대한 대황 추출물의 항암효과)

  • Yun, Hyun-Joung;Hwang, Seong-Goo;Yun, Hyung-Joong;Kim, Chang-Hyun;Seo, Gyo-Soo;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.27-36
    • /
    • 2006
  • Objectives : This study was performed for the investigation of anticancer effects of methanol extract of Rheum Rhizoma (MeOH-RR) on a human liver cancer cell line (HepG2). Methods : To study the cytotoxic effect of MeOH-RR on HepG2 cells, the cell viability was determined by XTT reduction method and trypan blue exclusion assay. The cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, MeOH-RR-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome c from mitochondria to cytosol, the level of Bcl-2 and Bax were examined by western blot analysis. Results : MeOH-RR reduced proliferation of HepG2 cells in a dose-dependent manner at 24 h and 48 h treatment. MeOH-RR induced the activation of caspase-3, -8, and -9 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3. Furthermore, treatment with MeOH-RR resulted in internucleosomal DNA fragmentation, evidenced by the formation of a DNA ladder on agarose gel, a hallmark of cells undergoing apoptosis. MeOH-RR downregulated Bcl-2, upregulated Bax, and increased the release of cytochrome c from the mitochondria into cytosol in a dose-dependent manner. Moreover, MeOH-RP increased caspase-3 activity. Conclusion : There results suggest that MeOH-RR induce apoptosis via mitochondrial pathway and caspase-3-dependent pathway in HepG2 cells. There results suggest that MeOH-RR is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Korean Red Ginseng water extract arrests growth of xenografted lymphoma cells

  • Park, Jae Gwang;Son, Young-Jin;Aravinthan, Adithan;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.431-436
    • /
    • 2016
  • Background: Although numerous studies of the anticancer activities of Korean Red Ginseng (KRG) have been performed, the therapeutic effect of KRG on leukemia has not been fully elucidated. In this study, we investigated the antileukemia activities of KRG and its cellular and molecular mechanisms. Methods: An established leukemia tumor model induced by xenografted T cell lymphoma (RMA cells) was used to test the therapeutic activity of KRG water extract (KRG-WE). Direct cytotoxic activity of KRG-WE was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The immunomodulatory activities of KRG-WE were verified by immunohistochemistry, nitric oxide production assay. The inhibitory effect of KRG-WE on cell survival signaling was also examined. Results: Orally administered KRG-WE reduced the sizes of tumor masses. Levels of apoptosis regulatory enzymes and cleaved forms of caspases-3 and -8 were increased by this extract. In addition, expression of matrix metalloproteinase-9, a metastasis regulatory enzyme, was decreased by KRG-WE treatment. The proportion of CD11c+ cells was remarkably increased in the KRG-treated group compared to the control group. However, KRG-WE did not show significant direct cytotoxicity against RMA cells. Conclusion: Our results strongly suggest that the KRG might have antileukemia activity through CD11c+ cell-mediated antitumor immunity.

Induction of Apoptosis and Its Mechanism by Siegesbeckia Glabrescens in HepG2 cells (간암 세포주에서의 희렴의 Apoptosis 유도와 기전)

  • Kim, Yoon-Tae;Lee, Heon-Jae;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.640-646
    • /
    • 2005
  • This study was performed for the investigation of anticancer effects of Siegesbeckia glabrescens(SG) on HepG2 cells, a human hepatoma cell line. In the previous study, we examined the involvement of nitric oxide (NO) on anti-proliferative and apoptotic efficacy of SG in vascular smooth muscle cells. The possible mechanism of the apoptotic effects of SG was investigated in HepG2 cells. SG showed potent cytotoxic activity in HepG2 but not chang cells, liver normal cells. SG treatment caused morphological change such as cell shrinkage, nuclei condensation and cell blebbing in HepG2 cells. SG also increased the nitrite production of HepG2 cells in a dose-dependent manner. Furthermore, L-NNA treatment inhibited the anti-proliferative effect of SG. From RT-PCR, SG decreased Bcl-2 but no affected on Bax. Western blot for procaspase-3 and COX-2 showed that degradation of procaspase-3 protein level or inhibition of COX-2 protein expression by SG treatment. In addition, the apoptotic effect of SG was also demonstrated by DNA laddering. In conclusion, SG-induced HepG2 cells death can occur via apoptosis which was dose-dependent, and associated with apoptosis-related Bcl-2/Bax gene expressions, COX-2 inhibition, caspase-3 activation and NO pathway. These results suggest that SG is potentially useful as a chemotherapeutic/chemopreventive agent in hepatocellular carcinoma.

The Effect of (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-Olide (LS-1) from Lobophyyum sp. on the Apoptosis Induction of SNU-C5 Human Colorectal Cancer Cells

  • Kim, Eun-Ji;Kang, Jung Il;Tung, Nguyen-Huu;Kim, Young-Ho;Hyun, Jin Won;Koh, Young Sang;Chang, Weon-Young;Yoo, Eun Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.623-629
    • /
    • 2016
  • (1S,2S,3E,7E,11E)-3,7,11,15-cembratetraen-17,2-olide (LS-1), a marine cembrenolide diterpene, has anticancer activity against colon cancer cells such as HT-29, SNU-C5/5-FU (fluorouracil-resistant SNU-C5) and SNU-C5. However, the action mechanism of LS-1 on SNU-C5 human colon cancer cells has not been fully elucidated. In this study, we investigated whether the anticancer effect of LS-1could result from apoptosis via the modulation of $Wnt/{\beta}$-catenin and the TGF-${\beta}$ pathways. When treated with the LS-1, we could observe the apoptotic characteristics such as apoptotic bodies and the increase of sub-G1 hypodiploid cell population, increase of Bax level, decrease of Bcl-2 expression, cleavage of procaspase-3 and cleavage of poly (ADP-ribose) polymerase in SNU-C5 cells. Furthermore, the apoptosis induction of SNU-C5 cells upon LS-1 treatment was also accompanied by the down-regulation of $Wnt/{\beta}$-catenin signaling pathway via the decrease of GSK-$3{\beta}$ phosphorylation followed by the decrease of ${\beta}$-catenin level. In addition, the LS-1 induced the activation of TGF-${\beta}$ signaling pathway with the decrease of carcinoembryonic antigen which leads to decrease of c-Myc, an oncoprotein. These data suggest that the LS-1 could induce the apoptosis via the down-regulation of $Wnt/{\beta}$-catenin pathway and the activation of TGF-${\beta}$ pathway in SNU-C5 human colon cancer cells. The results support that the LS-1 might have potential for the treatment of human colon cancer.

Apoptosis induced by water extracts of Nypa fruticans wurmb via a mitochondria-dependent pathway in human FaDu hypopharyngeal squamous carcinoma cells

  • Lee, Seul Ah;Choi, Mi Suk;Park, Bo-Ram;Kim, Jin-Soo;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Nypa fruticans Wurmb (NFW) contains a large amount of phenolic acid and flavonoids, and is popular as a superfood in Myanmar. NFW has various biological activities, such as anti-inflammatory, anti-oxidant, and neuroprotective properties; however, the anti-cancer effect of NFW have not been reported. In this study, we investigated the anticancer activity of water extracts of NFW (WeNFW) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. The WeNFW inhibited FaDu cell growth in a dose-dependent manner without affecting normal cells (L929), as determined by an MTT assay and Live and Dead assay. In addition, the concentrations of WeNFW without cytotoxicity (0.025, 0.05, and 0.1 mg/mL) inhibited wound healing and colony formation. Furthermore, WeNFW significantly induced apoptosis through the proteolytic cleavage of caspase-3 and -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by DAPI staining, FACS analysis, and western blot analysis. Taken together, these results suggest that WeNFW exhibits potent anti-cancer effects by suppressing the growth of oral cancer cells, wound healing and colony formation activity. Via mitrochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, WeNFW can provide a natural chemotherapeutic drug for oral cancer in humans.

Apoptotic Potential and Chemical Composition of Jordanian Propolis Extract against Different Cancer Cell Lines

  • Abutaha, Nael
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.893-902
    • /
    • 2020
  • Propolis is a resinous substance that is collected by Apis mellifera from plant sources and is used in traditional medicine. To study the phytochemical constituents and apoptotic potential of Jordanian propolis extract against different cancer cell lines, propolis was extracted using methanol, hexane, and ethyl acetate and was fractionated using chromatographic methods. Cytotoxicity was assessed using MTT and LDH assays. The apoptotic potential was investigated using florescence microscopy, multicaspase assay, Annexin-V and dead cell assay, and cell cycle assay. The phytochemical constituents were analyzed using GC-MS. The methanol extract of propolis exhibited cytotoxic potential against all cell lines tested. The IC50 values of the methanol extract were 47.4, 77.8, 91.2, and 145.0 ㎍/ml for HepG2, LoVo, MDAMB231, and MCF7 cell lines, respectively. The IC50 values of the F1 fraction were 31.6 (MDAMB231), 38.9 (HepG2), 36.7 (LoVo) and 75.5 (MCF7) ㎍/ml. On further purification using thin-layer chromatography, the IC50 values of the F1-3 fraction were found to be 84.31(HepG2), 79.2 (MCF7), 70.4 (LoVo), and 68.9 (MDAMB231) ㎍/ml, respectively. The anticancer potential of the F1 fraction was confirmed through the induction of apoptosis and cell cycle arrest at the G0/G1 phase. The GC-MS analysis of the F1 fraction revealed the presence of 3-methyl-4-isopropylphenol (29.44%) as a major constituent. These findings indicate the potential of propolis extract as a cancer therapy. However, further investigation is required to assess the acute and subacute toxicity of the most active fraction.

Cytotoxic Effects of Phytophenolics from Caesalpinia mimosoides Lamk on Cervical Carcinoma Cell Lines through an Apoptotic Pathway

  • Palasap, Adisak;Limpaiboon, Temduang;Boonsiri, Patcharee;Thapphasaraphong, Suthasinee;Daduang, Sakda;Suwannalert, Prasit;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.449-454
    • /
    • 2014
  • Background: Extracts of Caesalpinia mimosoides Lamk has been reported to possess anticancer effects, but the active ingredients and the anti-cancer mechanisms are still unknown. Materials and Methods: The effects of a C mimosoides Lamk extract on cell proliferation and apoptosis induction in human cervical carcinoma cell lines, namely HeLa, SiHa, and C33A, as well as in normal Vero cells, were investigated. Results: Treatment with 5 active fractions (F17-F21) of C mimosoides Lamk methanol extracts inhibited cell viability in a dose- and time-dependent manner. Neutral red assays indicated that treatment with F21 significantly decreased the viability of all cervical cancer cell lines compared to F21-treated normal cells. In addition, HPLC analysis revealed that F21 contained multiple phenolic compounds, namely gallic acid, caffeine, vanillic acid, ferulic acid and resveratrol. F21 had the lowest IC50 and, therefore, a much higher cytotoxicity than F20, F17, F19, and F18 by 20-, 25-, 46- and 47- fold, respectively. Analysis of activation of the apoptosis pathway using a caspase 3/7 activity assay revealed that F21 treatment resulted in a considerable increase in caspase activation in all cancer cell lines tested. At the same concentration of F21, HeLa cells had the highest caspase activity (6.5-fold) compared to the control. Conclusion: C mimosoides Lamk may be of value as an alternative therapeutic agent, especially in combination with other compounds offering possible of synergy of action. Moreover, HPV- and non-HPV-related cervical cancer cells may differ in their responses to treatment regimens.

Isoalantolactone Inhibits the Formation of Multicellular Tumor Spheroids Derived From Human Hepatocellular Carcinoma Hep3B Cells Through the Induction of ROS-dependent Apoptosis (ROS 의존적 세포사멸 유도를 통한 isoalantolactone의 인간 간세포암종 Hep3B 세포 유래 다세포 종양 spheroid 형성의 억제)

  • Min Yeong Kim;Byunwoo Son;Sang-Hyup Lee;Sang Eun Park;Su Hyun Hong;Sang Hoon Hong;Eunjeong Kim;Yung Hyun Choi;Hyun Hwangbo
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.476-484
    • /
    • 2024
  • Although two-dimensional (2D) monolayer cell culture models are still widely used as the optimal models for anticancer activity research, three-dimensional (3D) multicellular tumor spheroid (3D MTS) models that can better approximate the tumor environment can offer an alternative to bridge the gap between in vitro and animal model studies. Isoalantolactone is among the sesquiterpene lactones found in medicinal plants, including the roots of Elecampane (Inula helenium L.), and is known to have various pharmacological activities, including anticancer activity. In this study, we investigated whether the anticancer activity of isoalantolactone observed in 2D models could be reproduced in a 3D MTS model derived from human hepatocellular carcinoma (HCC) Hep3B cells. According to our results, isoalantolactone inhibited the formation of MTSs in a manner dependent on the treatment concentration, which was accompanied by an increase in reactive oxygen species (ROS) generation. In particular, as isoalantolactone treatment and the culture time increased, the area of proliferating cells was replaced by cells in which apoptosis was induced. Additionally, in MTSs, isoalantolactone increased the expression of death-receptor-related proteins and the activity of caspase-3, and it decreased the expression of the Bax/Bcl-2 expression ratio and total poly(ADP-ribose) polymerase. However, when the production of ROS was artificially blocked, all these changes caused by isoalantolactone were attenuated and the cell survival rate of MTS cells was restored. Therefore, the results of this study suggest that the induction of apoptosis in Hep3B cell-derived MTSs by isoalantolactone is achieved through the activation of extrinsic and intrinsic pathways and is ROS-dependent.