• Title/Summary/Keyword: anticancer activation

Search Result 267, Processing Time 0.032 seconds

Autophagy: Noble target mechanisms in natural medicines as anticancer agents (자가식세포작용: 천연물항암제로서의 신규작용기전)

  • Kang, Se-Chan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • Programmed cell death systems are important for an active type of cell deaths. Among them, a type of programmed cell death, autophagy is activated in cancer cells in response to multiple stresses and has been demonstrated to promote tumor cell survival and drug resistance. Thus, in the area of cancer, over the time frame form around the 1940s to date, of the 155 small molecules, 73% are other than "synthetic", with 47% actually being either "natural products" or "directly derived therefrom". Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Numerous oncogenes, including Akt1, Bcl-2, NF1, PDPK1, class I PI3K, PTEN, and Ras and oncosuppressors, inculuding Bec-1, Bif-1, DAPK-1, p53 and UVRAG suppress or promote the autophagy pathway. Regulation of autophagy in tumors is governed by similar principles of the normal cells, only in a much more complicated manner, given the frequently observed abnormal PI3K activation in cancer and the multitude of interactions between the PI3K/AKT/mTOR pathway and other cell signaling cascades, often also deregulated in tumor cells. Autophagy induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality of development for natural medicines.

Effects of selected phytochemicals and fruit extracts on Poly(ADP-ribose) polymerase (PARP) activity induced by H2O2 in MCF-7 breast cancer cells (식물생리활성물질과 과일류 추출물이 MCF-7 유방암 세포에서 H2O2로 유도된 Poly(ADP-ribose) Polymerase (PARP) 활성도에 미치는 영향)

  • Yoon, Hyungeun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.499-502
    • /
    • 2019
  • Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which is activated in response to DNA damage, and which mediates DNA repair. PARP inhibitors can be used to reduce resistance of cancer cells to anticancer treatments. The objective of this study was to investigate the effects of selected phytochemicals and fruit extracts on PARP activation in MCF-7 breast cancer cells subjected to oxidative stress. Pre-incubation with epigallocatechin gallate (EGCG), apple extract (AE), cranberry extract (CE), or grape extract (GE) for 2 hours at test concentrations reduced PARP activity induced upon treatment with hydrogen peroxide in a dose-dependent manner (p<0.05). GE was found to be the most efficient PARP inhibitor among the fruit extracts examined. These results suggest that phytochemicals of fruit extracts might be used as PARP inhibitors in order to assist anticancer agents.

New inhibitors of the NF-kB activation and NO production from Artemisia sylvatica

  • Jin, Huizi;Lee, Jeong-Hyung;Lee, Dong-Ho;Kim, Young-Ho;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.67.1-67.1
    • /
    • 2003
  • Three new guaianolide type of sesquiterpene lactones, 8${\alpha}$-angeloyloxy-1${\alpha}$-hydroxy-3${\alpha}$,4${\alpha}$-epoxy-5${\alpha}$, 7${\alpha}$H-10(14), 11(13)-guaiadien-12,6${\alpha}$-olide (1), 8${\alpha}$-methylbutyryloxy-1${\alpha}$-hydroxy-3${\alpha}$, 4${\alpha}$-epoxy-5${\alpha}$, 7${\alpha}$H-10(14),11(13)-guaiadien-12,6${\alpha}$-olide (2), and 8${\alpha}$-isovaleryloxy-1${\alpha}$-hydroxy-3${\alpha}$, 4${\alpha}$-epoxy-5${\alpha}$, 7${\alpha}$H-10(14),11 (13)- guaiadien-12,6${\alpha}$-olide (3), together with six known sesquiterpenes, artemisolide (4), 3-methoxytanapartholide (5), deacetyllaurenobiolide (6), moxartenolide (7), arteminolide B (8), and arteminolide D (9) were isolated by bioassay-guided fractionation using the NF-kB mediated reporter gene assay system. (omitted)

  • PDF

Synergistic anticancer activity of resveratrol in combination with docetaxel in prostate carcinoma cells

  • Lee, Sang-Han;Lee, Yoon-Jin
    • Nutrition Research and Practice
    • /
    • v.15 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: The study was conducted to investigate the efficacy of the combination treatment of phytochemical resveratrol and the anticancer drug docetaxel (DTX) on prostate carcinoma LNCaP cells, including factors related to detailed cell death mechanisms. MATERIALS/METHODS: Using 2-dimensional monolayer and 3-dimensional spheroid culture systems, we examined the effects of resveratrol and DTX on cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential, apoptosis, and necroptosis by MTT, flow cytometry, and Western blotting. RESULTS: At concentrations not toxic to normal human prostate epithelial cells, resveratrol effectively decreased the viability of LNCaP cells depending on concentration and time. The combination treatment of resveratrol and DTX exhibited synergistic inhibitory effects on cell growth, demonstrated by an increase in the sub-G0/G1 peak, Annexin V-phycoerythrin positive cell fraction, ROS, mitochondrial dysfunction, and DNA damage response as well as concurrent activation of apoptosis and necroptosis. Apoptosis and necroptosis were rescued by pretreatment with ROS scavenger N-acetylcysteine. CONCLUSIONS: We report resveratrol as an adjuvant drug candidate for improving the outcome of treatment in DTX therapy. Although the underlying mechanisms of necroptosis should be investigated comprehensively, targeting apoptosis and necroptosis simultaneously in the treatment of cancer can be a useful strategy for the development of promising drug candidates.

Induction of Apoptosis by Scolopendra subspinipes mutilans in Human Leukemia HL-60 Cells through Bcl-xL Regulation (왕지네(Scolopendra subspinipes mutilans)의 Bcl-xL 조절에 의한 HL-60 세포의 아폽토시스(Apoptosis) 유도)

  • Kim, Kil-Nam;Kim, Sang-Bum;Yoon, Weon-Jong;Yang, Kyoung-Sik;Park, Soo-Yeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1408-1414
    • /
    • 2008
  • The anticancer properties of Scolopendra subspinipes mutilans extract were investigated. The extract from S. subspinipes mutilans by 80% EtOH was fractionated with n-hexane, dichloromethan ($CH_2Cl_2$), ethylacetate (EtOAc), and butanol (BuOH) in order. The EtOAc fraction showed the highest inhibitory activity (about 80%) against human leukemia (HL-60) cell growth at $50\;{\mu}g/mL$. To explore the mechanism of cytotoxicity, we used several measures of apoptosis to determine whether these processes were involved in EtOAc fraction-induced HL-60 cell death. Our results showed EtOAc fraction induced cell shrinkage, cell membrane blebbing, apoptotic body, and DNA fragmentation. The EtOAc fraction gradually decreased the expression of anti-apoptotic Bcl-xL and led to the activation of caspase-3, -9 and cleavage of PARP. These findings suggest that S. subspinipes mutilans exhibits potential anticancer properties.

Anticancer Mechanisms of 3-Heptylamino-6-Allylthiopyridazine and 3-Dipentylamino-6-Allylthiopyridazine in Human Colon Carcinoma RKO Cells (RKO 대장암세포에서 3-헵틸아미노-6-알릴티오피리다진과 3-디펜틸아미노-6-알릴티오피리다진의 항암기전)

  • Lim, Hyun Kyung;Kwon, Yumi;Song, Jiyun;Kim, Kyoung Mee;Kim, Chaewon;Park, Myung-Sook;Jung, Joohee
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.101-106
    • /
    • 2016
  • Allylthiopyridazine derivatives were synthesized and evaluated for anti-proliferative activities in the previous study. In this study, selected two allylthiopyridazine derivatives (compound I, 3-heptylamino-6-allylthiopyridazine and compound II, 3-dipentylamino-6-allylthiopyridazine) were assessed for cytotoxicity and chronic proliferation in human colon carcinoma RKO cells. Two derivatives dose-dependently inhibited cell viability and proliferation. To elucidate the anticancer mechanism of two derivatives, we investigated the expression level of apoptosis-related proteins in RKO cells. Compound I induced the activation of JNK and expression of p53 and p21. On the other hand, compound II showed no change of p53 level. Interestingly, compound II inhibited the nuclear translocation of NF-${\kappa}B$. This result suggested that compound II suppressed cell proliferation. These different mechanisms of these compounds might have occurred through different steric conformation.

The Role of HS-1200 Induced Autophagy in Oral Cancer Cells

  • Jang, Nam-Mi;Oh, Sang-Hun;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2013
  • Bile acids and synthetic bile acid derivatives induce apoptosis in various kinds of cancer cells and thus have anticancer properties. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, few data are available regarding the role of autophagy in oral cancers and there have been no reports of autophagic cell death in OSCCs (oral squamous cell carcinoma cells) induced by HS-1200, a synthetic bile acid derivative. We thus examine whether HS-1200 modulates autophagy in OSCCs. Our findings indicate that HS-1200 has anticancer effects in OSCCs, and we observed in these cells that autophagic vacuoles were visible by monodansylcadaverine (MDC)and acridine orange staining. When we analyzed HS-1200-treated OSCC cells for the presence of biochemical markers, we observed that this treatment directly affects the conversion of LC-3II, degradation of p62/SQSTM1 and full-length beclin-1, cleavage of ATG5-12 and the activation of caspase. An autophagy inhibitor suppressed HS-1200-induced cell death in OSCCs, confirming that autophagy acts as a pro-death signal in these cells. Furthermore, HS-1200 shows anticancer activity against OSCCs via both autophagy and apoptosis. Our current findings suggest that HS-1200 may potentially contribute to oral cancer treatment and thus provide useful information for the future development of a new therapeutic agent.

Combined Treatment with Coptidis Rhizoma Extract and Arsenic Trioxide Enhanced Apoptosis through Diverse Pathways in H157 Cells

  • Youn, Myung-Ja;Kim, Yun-Ha;Kim, Hyung-Jin;Song, Je-Ho;Jeon, Ho-Sung;Yu, Dong-Hee;Sul, Jeong-Dug;So, Hong-Seob;Park, Rae-Kil
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1449-1459
    • /
    • 2009
  • Coptidis rhizoma (huanglian) is an herb that is widely used in traditional Chinese medicine that has recently been shown to possess anticancer activity. However, the molecular mechanism underlying the anticancer effects of this herb is poorly understood. In this study, we investigated the anticancer activity of a combination of CR extract and arsenic trioxide, as well as the apoptotic pathway associated with its mechanism of action in human lung cancer H157 cells. Combined treatment of H157 cells with CR extract and arsenic trioxide resulted in significant apoptotic death. In addition, combined treatment with CR extract and arsenic trioxide acted in concert to induce a loss of mitochondrial membrane potential (${\Delta}{\Psi}$), the release of cytochrome c from mitochondria, and an increase in the expression of pro-apoptotic p53 and Bax protein, which resulted in activation of caspases and apoptosis. CR extract combined with arsenic trioxide also increased the lipid peroxidation, mRNA expression of DR4 and DR5 and caspase-8 activity. These data indicate that combined treatment with CR extract and arsenic trioxide enhanced apoptotic cell death in H157 cells through diverse pathways, including mitochondrial dysfunction and death receptors, particularly DR4 and DR5. Thus, this treatment may be an effective from of chemotherapy.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

Induction of Cell Death by Bifidobacterium infantis DS1685 in Colorectal and Breast Cancers via SMAD4/TGF-Beta Activation

  • In Hwan Tae;Jinkwon Lee;Yunsang Kang;Jeong Min Lee;Kunhyang Park;Haneol Yang;Hee-Won Kim;Jeong Heon Ko;Doo-Sang Park;Dae-Soo Kim;Mi-Young Son;Hyun-Soo Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1698-1704
    • /
    • 2024
  • Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.