• Title/Summary/Keyword: anticancer activation

Search Result 267, Processing Time 0.03 seconds

Effects of Triterpenoids from Luvunga scandens on Cytotoxic, Cell Cycle Arrest and Gene Expressions in MCF-7 Cells

  • Taher, Muhammad;Al-Zikri, Putri Nur Hidayah;Susanti, Deny;Arief Ichwan, Solachuddin Jauhari;Rezali, Mohamad Fazlin
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Plant-derived triterpenoids commonly possesses biological properties such as anti-inflammatory, antimicrobial, anti-viral and anti-cancer. Luvunga scandens is one of the plant that produced triterpenoids. The aims of the study was to analyze cell cycle profile and to determine the expression of p53 unregulated modulator of apoptosis (PUMA), caspase-8 and caspase-9 genes at mRNA level in MCF-7 cell line treated with two triterpenoids, flindissol (1) and 3-oxotirucalla-7,24-dien-21-oic-acid (2) isolated from L. scandens. The compounds were tested for cell cycle analysis using flow cytometer and mRNA expression level using quantitative RT-PCR. The number of MCF-7 cells population which distributed in Sub G1 phase after treated with compound 1 and 2 were 7.7 and 9.3% respectively. The evaluation of the expression of genes showed that both compounds exhibited high level of expression of PUMA, caspase-8 and caspase-9 as normalized to ${\beta}-actin$ via activation of those genes. In summary, the isolated compounds of L. scandens plant showed promising anticancer properties in MCF-7 cell lines.

Interference of Fisetin with Targets of the Nuclear Factor-κB Signal Transduction Pathway Activated by Epstein-Barr Virus Encoded Latent Membrane Protein 1

  • Li, Rong;Liang, Hong-Ying;Li, Ming-Yong;Lin, Chun-Yan;Shi, Meng-Jie;Zhang, Xiu-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9835-9839
    • /
    • 2014
  • Fisetin is an effective compound extracted from lacquer which has been used in the treatment of various diseases. Preliminary data indicate that it also exerts specific anti-cancer effects. However, the manner in which fisetin regulates cancer growth remains unknown. In this study, we elucidated interference of fisetin with targets of the nuclear factor ${\kappa}B$ signal transduction pathway activated by Epstein-Barr virus encoding latent membrane protein 1 (LMP1)in nasopharyngeal carcinoma (NPC) cells, Results showed that fisetin inhibited the survival rate of CNE-LMP1 cells and NF-${\kappa}B$ activation caused by LMP1. Fisetin also suppressed nuclear translocation of NF-${\kappa}B$ (p65) and $I{\kappa}B{\alpha}$ phosphorylation, while inhibiting CyclinD1, all key targets of the NF-${\kappa}B$ signal transduction pathway. It was suggested that interference effects of fisetin with signal transduction activated by LMP1 encoded by the Epstein-Barr virus may play an important role in its anticancer potential.

In vitro and in vivo Evaluation of the Antitumor Efficiency of Resveratrol Against Lung Cancer

  • Yin, Hai-Tao;Tian, Qing-Zhong;Guan, Luan;Zhou, Yun;Huang, Xin-En;Zhang, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1703-1706
    • /
    • 2013
  • Lung cancer remains a deadly disease with unsatisfactory overall survival. Resveratrol (Res) has the potential to inhibit growth of several types of cancer such as prostate and colorectal examples. In the current study, we evaluated in vitro and in vivo anticancer efficiency of Res in a xenograft model with A549 cells. Cell inhibition effects of Res were measured by MTT assay. Apoptotis of A549 cells was assessed with reference to caspase-3 activity and growth curves of tumor volume and bodyweight of the mice were measured every two days. In vitro cytotoxicity evaluation indicated Res to exert dose-dependent cell inhibition effects against A549 cells with activation of caspase-3. In vivo evaluation showed Res to effectively inhibit the growth of lung cancer in a dose-dependent manner in nude mice. Therefore, we believe that Res might be a promising phytomedicine for cancer therapy and further efforts are needed to explore this potential therapeutic strategy.

Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression.

  • Park, Hye-Jin;Song, Minjung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of $196{\mu}g/mL$. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B ($NF-{\kappa}B$), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via $NF-{\kappa}B$ inactivation.

Oleuropein Induces Apoptosis Via the p53 Pathway in Breast Cancer Cells

  • Hassan, Zeinab Korany;Elamin, Maha Hussein;Omer, Sawsan Ali;Daghestani, Maha Hassan;Al-Olayan, Ebtesam Salah;Elobeid, Mai AbdelRahman;Virk, Promy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6739-6742
    • /
    • 2013
  • Background: Breast cancer is a major health problem worldwide. Olive oil induces apoptosis in some cancer cells due to phenolic compounds like oleuropein. Although oleuropein has anticancer activity, the underlying mechanisms of action remain unknown. The study aimed to assess the mechanism of oleuropin-induced breast cancer cell apoptosis. Materials and Methods: p53, Bcl-2 and Bax gene expression was evaluated by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in luminal MCF-7 cells. Results: Oleuropein-induced apoptosis was accompanied by up-regulation of both p53 and Bax gene expression levels and down-regulation in Bcl2. Conclusions: Oleuropein induces apoptosis in breast tumour cells via a p53-dependent pathway mediated by Bax and Bcl2 genes. Therefore, oleuropein may have therapeutic potential in breast cancer patients by inducing apoptosis via activation of the p53 pathway.

Mitochondria-mediated Apoptosis in Human Lung Cancer A549 Cells by 4-Methylsulfinyl-3-butenyl Isothiocyanate from Radish Seeds

  • Wang, Nan;Wang, Wei;Huo, Po;Liu, Cai-Qin;Jin, Jian-Chang;Shen, Lian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2133-2139
    • /
    • 2014
  • 4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a wellknown anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (${\Delta}{\Psi}m$), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC.

Induction of Apoptosis Signaling by a Glycoprotein of Capsosiphon fulvescens in AGS Cell (매생이 (Capsosiphon fulvescens) 당단백질에 의한 인간 위암세포 사멸기전)

  • Kim, Young-Min;Kim, In-Hye;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • Capsosiphon fulvescens is well-known green sea algae that, in recent years, has been proposed as a potential anticancer drug. In this study, we found that C. fulvescens glycoprotein (Cf-GP) had pro-apoptotic effects on human gastric carcinoma cells. By SDS-PAGE, we confirmed that C. fulvescens extract contained a glycoprotein. Using H33342 staining, we found that the Cf-GP caused cell death in a does-dependent manner, while an MTS assay showed decreased cellular viability due to induction of apoptosis. To determine the effect of Cf-GP on apoptosis-related cellular events, cells were treated with Cf-GP and the expression of several apoptosis-related protein was determined by Western blotting. Our results indicate that Cf-GP activated both a caspase cascade and PARP, which is a substrate of caspase-3, caspase-8 and the Bcl-2 family proteins. In addition, we assessed caspase-3, and -8 activation and annexin V staining. Our results revealed a cell cycle arrest, itself leading to an increased percentage of sub-G1 cells. Our findings indicate that Cf-GP may be a source of bio-functional material with therapeutic effects on human gastrointestinal cancer.

Effect of dietary supplementation of grape skin and seeds on liver fibrosis induced by dimethylnitrosamine in rats

  • Shin, Mi-Ok;Moon, Jeon-Ok
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.369-374
    • /
    • 2010
  • Grape is one of the most popular and widely cultivated fruits in the world. Although grape skin and seeds are waste product of the winery and grape juice industry, these wastes contain large amounts of phytochemicals such as flavonoids, phenolic acids, and anthocyanidins, which play an important role as chemopreventive and anticancer agents. We evaluated efficacies of grape skin and seeds on hepatic injury induced by dimethylnitrosamine (DMN) in rats. Treatment with DMN significantly increased levels of serum alanine transaminase, aspartate transaminase, alkaline phosphatase, and bilirubin. Diet supplementation with grape skin or seeds (10% daily for 4 weeks) prevented these elevations. The grape skin and seeds also restored serum albumin and total protein levels, and reduced the hepatic level of hydroxyproline and malondialdehyde. Furthermore, grape skin and seeds reduced DMN-induced collagen accumulation, as estimated by histological analysis of liver tissue stained with Sirius red. Grape skin and seeds also reduced hepatic stellate cell activation, as assessed by ${\alpha}$-smooth muscle actin staining. In conclusion, grape skin and seeds exhibited in vivo hepatoprotective and antifibrogenic effects against DMN-induced liver injury, suggesting that grape skin and seeds may be useful in preventing the development of hepatic fibrosis.

Tamoxifen Suppresses Clusterin Level through Akt Inactivation and Proteasome Degradation in Human Prostate Cancer Cells

  • Shim, Jae-Ho;Choi, Chang-Su;Lee, Eun-Chang;Kim, Mie-Young;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Clusterin is a heterodimeric sulfated glycoprotein and plays a role in many different types of cancer as a cell survival factor and helps cancerous cells to evade stress-induced apoptosis. To investigate whether the regulation of clusterin expression is involved in the mechanism of anticancer agent, we studied the effect of tamoxifen on clusterin expression in human prostate cancer PC-3 cells. Treatment of PC-3 cells with tamoxifen reduced cellular proliferation. Western blot analyses showed that treatment with tamoxifen suppressed clusterin expression in a concentration-dependent manner. Transfection with clusterin siRNA plasmid showed that clusterin is required for PC-3 cell survival. We found that tamoxifen resulted in a rapid decrease in the phosphorylation of Akt on Ser473 leading to prevent kinase activity. Expression of myristoylated Akt prevented tamoxifen-mediated clusterin downregulation. Interestingly, MG132, a wellknown proteasome inhibitor also recovered clusterin expression suppressed by tamoxifen. These data indicate that clusterin expression may be regulated by activation of Akt and ubiquitin-proteasome pathway plays an important role in tamoxifen-mediated clusterin suppression.

Apoptosis Induction of MCF-7 Human Breast Carcinoma Cells by Butein (Butein에 의한 MCF-7 유방암 세포의 세포사멸에 의한 항암 효과)

  • Song, Ba-Da;Kim, Sun-Rye;Kim, Sung-Hun;Shin, Yong-Cheol;Ko, Seong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.385-389
    • /
    • 2010
  • Butein(3,4,2',4-tetrahydroxychalcone) has been reported anticancer effects in several cancer type, which is prostate, bladder cancer but breast cancer is not. This study was to investigate the antiproliferative effects by butein(3,4,2',4-tetrahydroxychalcone) in MCF-7 human breast carcinoma cells. We invastigated the effects of dose-dependently cell growth inhibition by butein, which could be proved by WST-1 assay. Also, flow cytometry analysis was butein increase percentage of subG1 phase. As well as, butein induces apoptosis through the expression of caspase-8,-3 and poly(ADP-ribose) polymerase(PARP) activation but not in DMSO treated cells. Taken together, this results suggest that butein induced MCF-7 apoptosis through extrinsic pathway and thus may have potential tumor suppressor in breast cancer.