• Title/Summary/Keyword: antibody engineering

Search Result 355, Processing Time 0.03 seconds

Improvement of Artificial Antibody Secretion Using Supercharged Protein (단백질의 과전하화를 이용한 인공 항체의 분비 개선)

  • Park, Jiyeon;Choi, Heeju;Lee, Hyejin;Ahn, Jung Hoon
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.420-427
    • /
    • 2020
  • A repebody, an artificial non-immunoglobulin protein scaffold, is expected to be a solution in the search for faster, cheaper, and customizable antibodies. However, the production of medical repebodies remains difficult due to their low yield and the complex purification processes required. The Pseudomonas fluorescens ABC transporter system has been suggested as an efficient and cost-effective method for repebody production, but the total yield is low because of the secreted protein's positive charge; thus, a repebody with a high isoelectric point needs to be changed into a more negatively charged protein for better secretion. To achieve this, we first attached oligo-aspartic acids to the N- and C-terminals of the repebody, but secretion efficiency was not enhanced significantly. Subsequently, we devised an alternative method for improved secretion efficiency by engineering fifteen positively charged amino acids to aspartic acid in the non-antigen binding sites of the repebody to give a high net negative charge. As a result, secretion efficiency was greatly enhanced from 21.2% (wildtype) to 58.5% (negatively supercharged). The negatively supercharged repebody was succussfully produced extracellularly by ABC transporter secretion system in P. fluorescens.

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors (국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용)

  • Kim, Do-Kyun;Park, Tae-Jung;Lee, Sang-Yup
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

Understanding Biotechnology: An Analysis of High School Students' Concepts (생명공학의 기본 개념에 대한 고등학생의 이해도 조사 및 개념 분석)

  • Chung, Young-Lan;Kye, Bo-Ah
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.463-472
    • /
    • 1998
  • Biotechnology is the process of using biological system for the production of materials. Genetic engineering, a subset of biotechnology, is the process of altering biological systems by the purposeful manipulation of DNA It is a new field in biology and no topic in biology is more likely to impact our personal lives and is therefore more worthy of our attention and understanding. The purpose of this study was to investigate students' understanding of the concepts of biotechnology, and a test tool which is made up of 20 basic questions was developed for the study. The subject of this study was high school students and the sample size was 486. In order to find out the source of students' misunderstanding, we also analysed high school textbooks and teachers were given the same tool applied to students. Two-way ANOVA was used for the analysis. Major findings of this study are as following; 1. Mean score of students was 41, and there was a significant difference between the scores of boys and girls(p<0.05). Female students scored higher than male students. The variables "region" and "major" had no significant influence. 2. Students' the most misunderstood concepts were "monoclonal antibody" and "gene cloning". Many students thought that a plamid DNA originally has a useful DNA in it, which is apparently wrong. 3. Mean score of teachers was 82, and the variabes of gender and career did not have statistically significant influence on the result(p>0.05). 4. Teachers got the lowest scores on the concepts of "gene therapy", "the accomplishment of biotechnology in agriculture and medicine", and "plasmid DNA". The results of item analysis implied that teachers' misunderstanding might be a part of the sources of students' misunderstaning. 5. Out of 18 basic concepts selected in the study, only 10 concepts were explained well enough in most textbooks. The results of item analysis indicated that textbooks also could be a part of the source of students' misunderstanding.

  • PDF

Characterization of MACS Isolated Cells from Differentiated Human ES Cells (인간 배아줄기세포로부터 분화된 세포에서 MACS 방법을 이용하여 분리한 세포의 특성에 대한 연구)

  • Cho, Jae Won;Lim, Chun Kyu;Shin, Mi Ra;Bang, Kyoung Hee;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2006
  • Objective: Human embryonic stem (ES) cells have a great potential in regenerative medicine and tissue engineering. The human ES cells could be differentiated into specific cell types by treatments of growth factors and alterations of gene expressions. However, the efficacy of guided differentiation and isolation of specific cells are still low. In this study, we characterized isolated cells from differentiated human ES cells by magnetic activated cell sorting (MACS) system using specific antibodies to cell surface markers. Methods: The undifferentiated hES cells (Miz-hESC4) were sub-cultured by mechanical isolation of colonies and embryoid bodies were spontaneously differentiated with DMEM containing 10% FBS for 2 weeks. The differentiated cells were isolated to positive and negative cells with MACS system using CD34, human epithelial antigen (HEA) and human fibroblast (HFB) antibodies, respectively. Observation of morphological changes and analysis of marker genes expression were performed during further culture of MACS isolated cells for 4 weeks. Results: Morphology of the CD34 positive cells was firstly round, and then it was changed to small polygonal shape after further culture. The HEA positive cells showed large polygonal, and the HFB positive spindle shape. In RT-PCR analysis of marker genes, the CD34 and HFB positive cells expressed endodermal and mesodermal genes, and HEA positive cells expressed ectodermal genes such as NESTIN and NF68KD. The marker genes expression pattern of CD34 positive cells changed during the extension of culture time. Conclusion: Our results showed the possibility of successful isolation of specific cells by MACS system from undirected differentiated human ES cells. Thus, MACS system and marker antibodies for specific cell types might be useful for guided differentiation and isolation of specific cells from human ES cells.

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant (형질전환 식물체에서의 복합 단일 항체 단백질 생산)

  • Ahn, Mi-Hyun;Oh, Eun-Yi;Song, Mi-Ra;Lu, Zhe;Kim, Hyun-Soon;Joung, Hyouk;Ko, Ki-Sung
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.123-128
    • /
    • 2009
  • Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.