• Title/Summary/Keyword: antibacterial spectrum

Search Result 153, Processing Time 0.024 seconds

Distribution and Antibiotic Production Characteristics for Streptomyces (Streptomyces의 토양중(土壤中) 분포(分布) 및 항생물질생산(抗生物質生産))

  • Shin, Gwan Chull;Yun, Bong Sik
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 1989
  • Out of 826 isolates of Streptomyces isolated from different soils, their distribution and antibiotic productivity were investigated. Distribution of the organism in the soil was affected by the soil conditions and plants. The highest isolation frequency was occurred from Quercus forest, Robinia forest and grass field, while soils from orchards and cultivating fields showed low density of Streptomyces. More than 49% of the isolates showed antibacterial activity against Bacillus subtilis, Erwinia carotovora subsp. carotovora and Xantomonas campestris pv. oryzae and about 40% of the isolates showed antiyeasty activity against Saccharomyces cerevisiae but only a few isolates showed antibiotic activity against E. coli and Pseudomonas solanacearum. Forty isolates of the Streptomyces showed strong antifungal activity against Pyricularia oryzae. Rate of isolation of Streptomyces was the highest on starch agar among the eight media tested. Antibiotic productivity of the isolates was the highest on potato sucrose agar medium among the 5 media tested.

  • PDF

Growth Inhibition Profile of an Antibacterial Entity from Paenibacillus DY1 Isolated from Korean Soil against Multidrug Resistant Enteric Bacterial Strains and Its Characterization

  • Shin, Eun-Seok;Kwon, Sun-Il;Yoo, Kwan-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • Due to wide abuse of antibiotics both in human and livestock use, the advent and spread of multidrug resistant (MDR) pathogens becomes a serious health problem all over the world. Since the development of new antibiotics is at a standstill in pharmaceutical industry, the choice of therapeutic antibiotics is getting narrower. In this study, in an effort to search new antibiotics, the antimicrobial activity of Paenibacillus DY1 isolated from Korean soil was characterized on its growth inhibition spectrum against various health threatening MDR strains, with its stability and chemical structure. Extracellular culture filtrate of Paenibacillus DY1 effectively inhibits the growth of all the tested MDR enteropathogenic Eshcherichia coli, enterohemolytic E. coli, and enterotoxigenic E. coli strains, at a similar level to that on the nonresistant control E. coli strains. It showed significant growth inhibition effect against the causative agents of class one legal communicable disease, MDR Salmonella typhi, MDR Salmonella paratyphi A, food poisoning bacteria, MDR Salmonella typhimurium, and other MDR Salmonella spp. The growth of all of 10 different MDR Shigella spp. strains and 6 different Vibrio spp. strains tested was also inhibited. The antimicrobial activity of Paenibacillus DY1 was well preserved after heat treatment, and was also stable in both alkaline and acidic environment. The antimicrobial activity was partially purified with Diaion HP20 column and TLC. By NMR study, the putative structure of the activity was postulated as an alkane having hydroxyl groups.

  • PDF

Purification and Characterization of Phocaecin PI80: An Anti-Listerial Bacteriocin Produced by Streptococcus phocae PI80 Isolated from the Gut of Peneaus indicus (Indian White Shrimp)

  • Satish Kumar, Ramraj;Arul, Venkatesan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1393-1400
    • /
    • 2009
  • A bacteriocin-producing strain PI80 was isolated from the gut of Penaeus indicus (Indian white shrimp) and identified as Streptococcus phocae PI80. The bacteriocin was purified from a culture supernatant to homogeneity as confirmed by Tricine SDS-PAGE. Reverse-phase HPLC analysis revealed a single active fraction eluted at 12.94 min, and MALDI-TOF mass spectrometry analysis showed the molecular mass to be 9.244 kDa. This molecular mass does not correspond to previously described streptococcal bacteriocins. The purified bacteriocin was named phocaecin PI80 from its producer strain, as this is the first report of bacteriocin production by Streptococcus phocae. The bacteriocin exhibited a broad spectrum of activity and inhibited important pathogens: Listeria monocytogenes, Vibrio parahaemolyticus, and V. fischeri. The antibacterial substance was also sensitive to proteolytic enzymes: trypsin, protease, pepsin, and chymotrypsin, yet insensitive to catalase, peroxidase, and diastase, confirming that the inhibition was due to a proteinaceous molecule (i.e., the bacteriocin), and not due to hydrogen peroxide or diacetyl. Phocaecin PI80 moderately tolerated heat treatment (up to $70^{\circ}C$ for 10 min) and resisted certain solvents (acetone, ethanol, and butanol). A massive leakage of $K^+$ ions from E. coli $DH5\alpha$, L. monocytogenes, and V. parahaemolyticus was induced by phocaecin PI80, as measured by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES). Therefore, the results of this study show that phocaecin PI80 may be a useful tool for inhibiting L. monocytogenes in seafood products that do not usually undergo adequate heat treatment, whereas the cells of Streptococcus phocae PI80 could be used to control vibriosis in shrimp farming.

Preparation and Characterization of Periodontal Chitosan Strip Containing Doxycycline Nanoparticle (독시사이클린 나노입자가 함유된 치주용 키토산 스트립의 제조 및 특성)

  • Song, Kyung-Suk;Yang, Jae-Heon;Kim, Young-Il;Chung, Kyu-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.233-239
    • /
    • 2001
  • Local drug delivery by using biocompatible polymers has been developed in the treatment of periodontitis for many years. In the field of dental therapy, doxycycline is usually a first choice because of its broad-spectrum antibiotic activity. The strip releases antibiotics for a week, and the polymer should be degradable after a week. In this study, we prepared and evaluated the chitosan strips and nanoparticle strips containing doxycycline hydrochloride, and studied their antiacterial activity, dissoultion, and degrability in vitro. The weight of cast strip containing a 5 mg of doxycycline hydrochloride and a 45 mg of chitosan polymer was $57.67{\pm}0.17\;mg$. The release rate of doxycycline hydrochloride from the strip was measured by HPLC. The drug released from chitosan strip and nanoparticle strip was shown to be $50\;{\mu}g/mL$ in first 24 hours. In antibacterial test showed growth inhibitory activity after 24 hrs anaerobic incubation. In vitro degradability showed demolished weight of $93.74{\pm}0.08%$ chitosan strip, $82.48{\pm}1.29%$ chitosan nanoparticle strip, $2.47{\pm}1.99%$ polycarprolactione strip (control). These results showed that, with this doxycycline hydrochloride strip, it is feasible to obtain a sustained release of the drug within the periodontal pocket for seven days which may be improve for local drug delivery system for treatment of periodontal disease.

  • PDF

Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria

  • Kim, Dong-Hyeon;Jeong, Dana;Kim, Hyunsook;Kang, Il-Byeong;Chon, Jung-Whan;Song, Kwang-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.787-790
    • /
    • 2016
  • Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at $25^{\circ}C$. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.

Effect of Antibiotics upon the Antibacterial Activity of Platelet Microbicidal Protein against Streptococcus rattus BHT

  • Kim, Jae-Wook;Choe, Son-Jin;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.

Physicochemical Properties, Stabilities and Pharmacokinetics of Cephalosporin 3'-Quinolone Dithiocarbamate (세팔로스포린 3'-퀴놀론의 물리화학적 성질, 안정성 및 체내약물동태)

  • 나성범;공재양;김완주;지웅길
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.638-646
    • /
    • 1993
  • A cepfialosporin with an aminothiazoiylmethoxyimino-type side chain at the 7 position and bicyclic quinolone dithicarbamate at the 3' position was synthesized. It has broad and potent antivacterial activity in vitro. The antibacterial spectrum reflects contributions of both the cephalosporin moiety and the quinolone moiety. Thus, this compound was named DACD implying a dualaction cephalosporin derivative. In this paper, the physicochemical proper-ties (lipid-water partition, pKa), stability and pharmacokinetics of DACD were determined and compared with cefotaxime 3'-norfloxacin dithiocarbamate (CENO). Stability tests were studied in pH 1.20, 6.80 and 8.00 buffers and in the presence of AB type human plasma, rat liver homogenate and its .betha.-lactamase. The pharmacokinetic parameters of DACD were evaluated in mice after a single intravenous dose of 40 mg/kg. The results are as follows. The lipid-water partition coefficient of DACD was higher than that of CENO. The calculated pKa values of CENO and DACD, were 6.82$\pm$0.03, 7.53$\pm$0.21, respectively. In the hydrolysis test, half-lives (t$^{1/2}$) of CENO and DACD was 66.0 hr and 80.0 hr in pH 6.80 buffer, 190 hr and 91.4 hr in pH 8.00 buffer. CENO and DACD were rapidly hydrolyzed in human plasma and in rat liver hornogenate. Half-lives (t$_{1/2}$ of CENO and DACD were 1.29 hr and 1.15 hr in hyman plasma, 0.62 hr and 0.71 hr rat liver homogenate. In $\beta$-lactamase stability test, CENO and DACD were very stable to the .betha.-lactamases obtained from three different strains. Half-life (t$_{1/2}$) and areas under the curve (AUC) in mice were 2.33 hr and 15.97 (mg.h/1), respectively.

  • PDF

Antimicrobial Properties and Cytotoxicity of Sulfated (1,3)-β-D-Glucan from the Mycelium of the Mushroom Ganoderma lucidum

  • Wan-Mohtar, Wan Abd Al Qadr Imad;Young, Louise;Abbott, Grainne M.;Clements, Carol;Harvey, Linda M.;McNeil, Brian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • Ganoderma lucidum BCCM 31549 has a long established role for its therapeutic activities. In this context, much interest has focused on the possible functions of the (1,3)-β-D-glucan (G) produced by these cultures in a stirred-tank bioreactor and extracted from their underutilized mycelium. In the existing study, we report on the systematic production of G, and its sulfated derivative (GS). The aim of this study was to investigate G and its GS from G. lucidum in terms of their antibacterial properties and cytotoxicity spectrum against human prostate cells (PN2TA) and human caucasian histiocytic lymphoma cells (U937). 1H NMR for both G and GS compounds showed β-glycosidic linkages and structural similarities when compared with two standards (laminarin and fucoidan). The existence of characteristic absorptions at 1,170 and 867 cm-1 in the FTIR (Fourier Transform Infrared Spectroscopy) for GS demonstrated the successful sulfation of G. Only GS exhibited antimicrobial activity against a varied range of test bacteria of relevance to foodstuffs and human health. Moreover, both G and GS did not show any cytotoxic effects on PN2TA cells, thus helping demonstrate the safety of these polymers. Moreover, GS showed 40% antiproliferation against cancerous U937 cells at the low concentration (60 μg/ ml) applied in this study compared with G (10%). Together, this demonstrates that sulfation clearly improved the solubility and therapeutic activities of G. The water-soluble GS demonstrates the potential multifunctional effects of these materials in foodstuffs.

Effectiveness of Vicryl $plus^{(R)}$ (Ethicon, USA) in Nosocomial Bacteria (실제 병원성 균주에서 Vicryl $plus^{(R)}$ (Ethicon, USA)의 효용성)

  • Jin, Young-Wan;Na, Young-Cheon
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.590-593
    • /
    • 2011
  • Purpose: Surgical site infections (SSIs) are the third most frequently reported nosocomial infection. Of these SSIs, mostly were confined to the incision associated with underlying disease as diabetes, cigarette smoking, systemic steroid use, obesity, operating room environment, suture and surgical technique. This study has been planned to reduce the SSIs by using Vicryl $plus^{(R)}$ (Ethicon, USA) which contains triclosan, a broad-spectrum antibacterial agent, into the infected wound to evaluate whether or not Vicryl $plus^{(R)}$ (Ethicon, USA) is effective to nosocomial bacteria using a zone of inhibition assay. Methods: We did a comparison of Vicryl $plus^{(R)}$ suture (with triclosan) size 2-0, 5-0 with $Vicryl^{(R)}$ suture (without triclosan) size 4-0 each as treatment and control group, applied in Mueller-Hinton agar infected by following mircroorganisms: Methicillin-sensitive $Staphylococcus$ $aureus$ (MSSA), Methicillin-resistant $Staphylococcus$ $aureus$ (MRSA), Acinetobacter baumanii, $Escherichia$ $coli$, Enterobacter faecalis, Pseudomonas aeruginosa, Candida albicans. Cultures were made of the selected mircroorganisms, seeding the study strain in agar plates for 24 and 48-hour period in an oven at $37^{\circ}C$ followed by zone of inhibition assay. Results: Vicryl $plus^{(R)}$ group has demonstrated to create a zone of inhibition against MRSA, MSSA and $A.$ $baumanii$, but no effect on $E.$ $faecalis$, $P.$ $aeruginosa$, $C.$ $albicans$. Vicryl $plus^{(R)}$ suture size 2-0 also had antibactericidal effect while Vicryl $plus^{(R)}$ suture size 5-0 did not. $Vicryl^{(R)}$ group had no zones of inhibition showing colonization at all mircroorganisms. Conclusion: Our results seem to warrant the use of Vicryl $plus^{(R)}$ as absorbable buried suture when concerning SSIs as a prophylaxis against surgical nosocomial infection.

Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function (광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성)

  • Kang, You-an;Jin, Sang-Keun;Ko, Jonghyun;Choi, Yeung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.