• 제목/요약/키워드: antibacterial resistance

Search Result 224, Processing Time 0.027 seconds

Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR

  • Shi, Chenxi;Li, Minmin;Muhammad, Ishfaq;Ma, Xin;Chang, Yicong;Li, Rui;Li, Changwen;He, Jingshan;Liu, Fangping
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.808-816
    • /
    • 2018
  • Bacterial biofilms have been demonstrated to be closely related to clinical infections and contribute to drug resistance. Berberine, which is the main component of Coptis chinensis, has been reported to have efficient antibacterial activity. This study aimed to investigate the potential effect of a combination of berberine with ciprofloxacin (CIP) to inhibit Salmonella biofilm formation and its effect on expressions of related genes (rpoE, luxS, and ompR). The fractional inhibitory concentration (FIC) index of the combination of berberine with CIP is 0.75 showing a synergistic antibacterial effect. The biofilm's adhesion rate and growth curve showed that the multi-resistant Salmonella strain had the potential to form a biofilm relative to that of strain CVCC528, and the antibiofilm effects were in a dose-dependent manner. Biofilm microstructures were rarely observed at $1/2{\times}MIC/FIC$ concentrations (MIC, minimal inhibition concentration), and the combination had a stronger antibiofilm effect than each of the antimicrobial agents used alone at $1/4{\times}FIC$ concentration. LuxS, rpoE, and ompR mRNA expressions were significantly repressed (p< 0.01) at $1/2{\times}MIC/FIC$ concentrations, and the berberine and CIP combination repressed mRNA expressions more strongly at the $1/4{\times}FIC$ concentration. The results indicate that the combination of berberine and CIP has a synergistic effect and is effective in inhibiting Salmonella biofilm formation via repression of luxS, rpoE, and ompR mRNA expressions.

Antibacterial Effect of Various Fermentation Products and Identification of Differentially Expressed Genes of E.coli (다양한 발효액의 항균효과와 대장균의 유전적 변화에 미치는 영향)

  • Heo, Jihye
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical opportunistic pathogens. Moreover, these bacteria are known to possess multidrug-resistant (MDR) properties. This study investigates the antimicrobial activity of six fermented products, which have varying efficacies against P. aeruginosa, E. coli, and S. aureus. To identify novel candidate genes, differential expression analysis was performed using an annealing control primer. In the disk diffusion method, Fig vinegar (FV) and Diospyros kaki Thunb vinegar (DTV) showed the greatest increase in inhibition compared to other fermented products, whereas fermented Korean traditional nature herb (FKTNH) had no antibacterial effect. This study identified down-regulation of Escherichia coli O157:H7 ompW gene for outer membrane protein W, whereas gene for synthetic construct Lao1 gene for L-amino acid oxidase were up-regulated in E. coli treated with 5% FV. Consuming fermented vinegar helps prevent bacterial infections. Especially, FV and DTV are potentially useful alternative natural products for multidrug resistance. Furthermore, both are expected to be used as effective natural antimicrobial agents, such as disinfectants.

Susceptibility of Oral Bacteria to Essential Oil of Artemisia capillaris Thunb.

  • Kim Kyong-Heon;Kim Baek-Cheol;Shin Chol-Gyun;Jeong Seung-Il;Kim Hong-Jun;Ju Young-Sung
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.121-128
    • /
    • 2004
  • Objective : The aim of this work is to investigate the antibacterial activity of the essential oil obtained from Artemisia capillaris (A. capillaris), as the development of microbial resistance to antibiotics make it necessary to constantly look for new and active compounds effective against pathogenic bacteria. Methods : The crushed materials of A. capillaris (1 kg) were subjected to steam distillation for 3 h, using a modified Clevenger type apparatus in order to obtain essential oil. Diethyl ether was the extracting solvent kept at 25°.... The essential oil was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The essential oil and the composition were tested for antimicrobial activities against 15 different genera of oral bacteria. Results and Conclusion : The components of the essential oil identified were: β-pinene (9.36%), camphor (3.32%), 1,8­cineole (4.38%), artemisia alcohol (3.32%), β-caryophyllene (11.08%), γ-cadinene (4.23%), and capillene (32.74%). The essential oil of A. capillaris exhibited considerable inhibitory effects against all oral bacteria tested, while their major components demonstrated various degrees of growth inhibition.

  • PDF

Use of a Sensitive Chemiluminescence-Based Assay to Evaluate the Metabolic Suppression Activity of Linezolid on Methicillin-Resistant Staphylococcus aureus Showing Reduced Susceptibility to Vancomycin

  • Komatsu, Mitsutakal;Tajima, Yutaka;Ito, Teruyo;Yamashiro, Yuichiro;Hiramatsu, Keiichi
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.734-741
    • /
    • 2009
  • Recently, strains of methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to vancomycin (VCM) have been clinically isolated. The antibacterial activity of a new drug, linezolid (LZD), in such a strain was evaluated by measuring bacterial metabolic activity. A total of 73 MRSA strains having various susceptibilities to VCM were subjected to a novel and highly sensitive chemiluminescence-based assay. LZD MIC in the tested strains, measured by the microbroth dilution method, was within the range 1-4 mg/l (mostly ${\leq}2$mg/l), except for one LZD-resistant strain (NRS127; MIC=7 mg/l), and showed no correlation with VCM resistance. The chemiluminescence assay demonstrated that bacterial metabolic activity was strongly suppressed with increasing LZD concentration. The chemiluminescence intensity curve had a low baseline activity without tailing in most strains. The present results suggest that LZD has strong antibacterial activity against MRSA strains, and would be effective for treatment of infections that are poorly responsive to VCM. The chemiluminescence assay facilitated sensitive and discriminative susceptibility testing within a relatively short time.

Antibacterial Activity and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Fermented Foods (전통발효식품에서 분리한 유산균의 항균활성 및 프로바이오틱스 기능성 연구)

  • Kang, Chang-Ho;Han, Seul Hwa;Kim, Yonggyeong;Jeong, Yulah;Paek, Nam-Soo
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • The aim of this study was to investigate probiotic characteristics and fermentation profile of selected lactic acid bacteria (LAB) isolated from traditional fermented foods. Antibacterial activity against various pathogens, acid and bile salt tolerance, cell hydrophobicity, and antibiotic resistance were examined. 16S rRNA sequencing was carried out to identify eight presumptive LAB isolates. In general, all identified LAB (Enterococcus faecium MG89-2, Lactobacillus plantarum MG207, L. paracasei MG310, L. casei MG311, Streptococcus thermophilus MG510, L. bulgaricus MG515, L. helveticus MG585, and L. fermentum MG590) showed strong antimicrobial activity. Also, the selected strains were resistant to bile acid up to 3% and their autoaggregation rates were as high as 60%. All selected strains tested were sensitive to chloramphenicol, tetracycline, and ampicillin, whereas resistant to nalidixic acid and kanamycin.

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.

Susceptibility of Oral Bacterial to Sophoraflavanone G isolated from the Root of Sophora flavescens

  • Kim, Kyong-Heon;Kim, Baek-Cheol;Yun, Ju-Bong;Jeong, Seung-Il;Kim, Hong-Jun;Ju, Young-Sung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.3
    • /
    • pp.33-37
    • /
    • 2004
  • Objective: The aim of this work is to investigate the antibacterial activity of the Sohporaflavanone G isolated from Sophora flavescens (S. flavescens), as the development of microbial resistance to antibiotics make it essential to constantly look for new and active compounds effective against pathogenic bacteria. Method : Sophoraflavanone G was isolated from the dried roots of Sophora flavescens Aiton (Leguminosae) by bioassay?guided fractionation. We investigated the effect of sophoraflavanone G on oral bacterial at various concentrations after incubation of 24 h in strains in the dose?dependent manner. Results: The structure of active compound, Sophoraflavanone G having a lavandulyl group at C?8, was elucidated on the basis of spectral data especially 1H?NMR and I3C?NMR. The antimicrobial activity showed that Sophoraflavanone G exhibited antimicrobial activilies against all the bacteria tested (MICs, 0.39 - 6.25 ㎍/ml). Sophoraflavanone G showed the strong antimicrobial activity against all the facultative bacteria and microaerophilic bacteria (MICs, 0.78 - 1.56 ㎍/ml) and also Sophoraflavanone G showed the strong antimicrobial activity against obligate anaerobic bacteria (MICs, 0.39 - 6.25 ㎍/ml).

  • PDF

Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review

  • Bajpai, Vivek K.;Kang, So-Ra;Xu, Houjuan;Lee, Soon-Gu;Baek, Kwang-Hyun;Kang, Sun-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.207-224
    • /
    • 2011
  • Diseases caused by plant pathogenic bacteria constitute an emerging threat to global food security. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in several host plants leading to considerable losses in productivity and quality of harvests. Despite the ranges of controlling techniques available, the microbiological safety of economically important crops and crop plants including fruits and vegetables continues to be a major concern to the agriculture industry. On the other hand, many of the currently available antimicrobial agents for agriculture are highly toxic, non-biodegradable and cause extended environmental pollution. Besides, the use of antibiotics has provoked an increased resistance among the bacterial pathogens and their pathovars. Thus, novel efficient and safe remedies for controlling plant bacterial diseases are necessary. There has been an increasing interest worldwide on therapeutic values of natural products such as essential oils, hence the purpose of this review is to provide an overview of the published data on the antibacterial efficacy of essential oils that could be considered suitable for application in agriculture as biocontrol measures against plant pathogenic bacteria of Xanthomonas species. The current knowledge on the use of essential oils to control Xanthomonas bacteria in vitro and in vivo models has been discussed. A brief description on the legal aspects on the use of essential oils against bacterial pathogens has also been presented. Through this review, a mode of antibacterial action of essential oils along with their chemical nature and the area for future research have been thoroughly discussed.

Analyzing of the Essential Oil Chemical Constituents in Artemisia lavandulaefolia and its Pharmacological Property on Antibacterial Activity

  • Kim, Kyong-Heon;Kim, Baek-Cheol;Lee, Hwa-Jung;Jeong, Seung-Il;Kim, Hong-Jun;Ju, Young-Sung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2004
  • Objective: The aim of this work is to investigate the antibacterial activity of the essential oil obtained from Artemisia lavandulaefolia (A. lavandulaefolia), as the development of microbial resistance to antibiotics make it essential to constantly look for new and active compounds effective against pathogenic bacteria. Method: The aerial parts of A. lavandulaefolia (1 kg) were subjected to steam distillation for 3 h, using a modified Clevenger type apparatus in order to obtain essential oil. Diethyl ether was the extracting solvent kept at 25?. The essential oil were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The essential oil and the composition were tested for antimicrobial activities against 15 different genera of oral bacteria. Ninety-nine compounds accounting for 94.74$\%$</TEX> of the oil were identified. The main compounds in the oil were 1,8-cineole (5.63$\%$), yomogi alcohol (4.49$\%$), camphor (4.92$\%$), a-caryophyllene (16.10$\%$), trans-a-famesene (5.09$\%$), a-terpineol (3.91$\%$), borneol (5.27$\%$), cis-chrysanthenol (6.98$\%$), and a-humulene oxide (3.33$\%$). The essential oil and its compounds were tested for antimicrobial activity against 10 different genera of oral bacteria. Conclusion: The essential oil of A. lavandulaefolia exhibited considerable inhibitory effects against all obligate anaerobic bacteria (MICs, 0.025 - 0.05 ㎎/ml) tested, while their major compounds demonstrated various degrees of growth inhibition

  • PDF

Antibacterial Activity of Amoxycillin/Clavulanic Acid(Augmentin) in Vitro (Augmentin(Amoxycillin/clavulanic acid)의 시험관내 항균효과)

  • Shim, Woo-Nam;Youn, Jung-Koo
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.3
    • /
    • pp.275-282
    • /
    • 1987
  • Strains of bacteria resistant to beta-lactam antibiotics have been increasing in number and are becoming troublesome in clinical medicine. The in vitro antibacterial activity of augmentin, a combination drug consisting of two parts amoxycillin to one part clavulanic acid, a potent beta-lactamase inhibitor, and their minimum inhibitory concentrations were determined by an agar dilution technique against ampicillin-resistant clinical isolates in Korea. Of the 226 strains tested, 140 strains(62%) were resistant to ampicillin. Among the 140 ampicillin-resistant strains, all Salmonella spp. Proteus spp. the majority of S. aureus and Shigella spp. were sensitive to augmentin. Ps. aeruginosa remained 100% resistant and there has been a considerable decline in resistant strains in E. coli and K. pneumoniae although a significant percentage of strains showed intermediate sensitivity. The minimum inhibitory concentrations of augmentin were ranged in $8{\mu}g/ml$ to $32{\mu}g/ml$ in most bacteria and all S. aureus were inhibited by $8{\mu}g/ml$. In our microbiological studies we have shown that augmentin is active against ampicillin-resistant strains of Staphylococci and Gram-negative bacteria. In this hospital there would appear to be a significant number of strains of E. coli and K. pneumoniae showing intermediate resistance to augmentin. Most of these strains should be susceptible to augmentin given by mouth or by the intravenous route depending on the concentrations of both amoxycillin and clavulanic acid obtainable in the various tissues.

  • PDF