• Title/Summary/Keyword: antibacterial material

Search Result 236, Processing Time 0.024 seconds

Characterization of Antibacterial Substance - Producing Bacillus subtilis Isolated from Traditional Doenjang (전통 된장으로부터 분리한 향균물질 생산 Bacillus subtilis의 특성)

  • Ryu, Hyun-Soon;Shon, Mi-Yae;Cho, Soo-Jeong;Park, Seok-Kyu;Lee, Sang-Won
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • A bacterium which has high enzymatic activities such as amylase, cellulase and protease was isolated from Korean traditional soybean food, doenjang. The isolated bacterium was identified to Bacillus subtilis HS25 by the test of morphological and biochemical properties according to Bergey's Manual of Systematic Bacteriology and API 50 CHL kit, and by the 16S rDNA sequence. The isolated B. subtilis HS25 had a potent antibacterial activity against food born causative or pathogenic bacteria. B. subtilis HS25 is endospore forming cell and contained flagella and abundant viscous material at the out layer of cell wall. It was rod type bacterium $(0.5{\sim}0.8{\times}3{\sim}5{\mu}m)$ having biochemical characteristics such as gram staining(+), catalase(+), oxidase(-) and hydrolysis of esculin(+). The optimal medium compositions for production of antibacterial substance in the B. subtilis HS25 were 1% of soluble starch, 0.5% of yeast extract, 0.5% of peptone and 0.05% of MgCl$_2{\cdot}6H_{2}O$. The optimum temperature and pH of the growth of the B. subtilis HS25 was 35$^{\circ}C$ and pH 7.5, respectively. The antibacterial activity was more high in neutral to a little alkaline pH (6.5-10.5) than in acidic pH. The optimal shaking speed to grow and to produce antibacterial substance of the B. subtilis HS25 was 160${\sim}$200 rpm. The optimal culture time for antibacterial activities of the bacterium were shown to be in the range of 12-36 hr.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Changes in the Antibacterial Activity of Green Tea Extracts in Various pH of Culture Broth against Staphylococcus aureus and Salmonella typhimurium (배지의 pH에 따른 녹차추출물의 Staphylococcus aureus 와 Salmonella typhimurium에 따른 항균작용)

  • 박찬성;차문석;김미림
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.206-212
    • /
    • 2001
  • Water extract of green tea(GTW) and 70% ethanol extract of green tea(GTE) were prepared for the test of antibacterial activity. The sensitivity of Staphylococcus aureus and Salmonella typhimurium to the green tea extracts in various pH of culture broth was tested. Tryptic soy broth(TSB) containing 0∼2%(w/v) of green tea extracts was adjusted to pH 5.0∼7.0 and inoculated with 10$\^$5/∼10$\^$6/ cells/ml of each bacteria. The plate counting method and clear zone test were used to determine inhibitory effect of green tea extracts. Green tea extracts completely inhibited the growth of S. aureus at 0.5% level and bactercidal at 0.5∼1.0% level of GTW and GTE at pH 5.0∼7.0. Green tea extracts were bactercidal to S. typhimurium at 1.5∼2.0% level of GTW and 1.0∼2.0% level of GTE at pH 7.0. Sal. typhimurium was more resistant than S. aureus. in same concentration of green tea extracts at same pH. The resistance of S. aureus and Sal. typhimurium was increased with decreasing pH of culture broth. The morphology of S. aureus cells treated with green tea extracts showed damage of cell wall and cytoplasmic membrane. Severely damaged cells of S. aureus lost electron dense material and cytoplasm. Green tea extracts stimulated autolysis and cell death of S. aureus. This result suggests that green tea extracts can be used as an effective natural antibacterial agent in food.

  • PDF

Potential uses of Aristotelia chilensis extracts as novel cosmetic materials (마키베리 추출물의 화장품 신규 원료로서의 가능성)

  • Kim, Mijung;Park, Seyeon
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.339-345
    • /
    • 2019
  • The present study aims to investigate the potential applications of Aristotelia chilensis (A. chilensis) extracts as novel cosmetic materials. The total extracts of A. chilensis were partitioned into chloroform (CHCl3), ethyl acetate (EtOAc), and distilled water (DW) fractions. A. chilensis extracts exhibited no cytotoxicity toward HaCaT human keratinocyte and B16F10 mouse melanoma cell lines. CHCl3, EtOAc, and DW extracts reduced oxidative stress, and EtOAc extract was superior to glutathione, a natural human antioxidant positive control. The extracts of A. chilensis reduced melanin synthesis in cells treated with α-melanocyte-stimulating hormone. The extracts of A. chilensis exhibited antibacterial effects toward Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), and Pseudomonas aeruginosa (P. aeruginosa). In particular, the EtOAc extract was effective in terms of antibacterial activity against S. aureus. In the present study, we identified several potential applications of A. chilensis extracts in terms of novel antioxidant and whitening cosmetic materials as well as antibacterial preservatives.

The Antimicrobial Effects of Natural Aromas for Substitution of Parabens (합성 항균제를 대체하기 위한 천연물질의 항균 효과)

  • 조춘구;김봉남;홍세흠;한창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.166-185
    • /
    • 2002
  • Aroma oils extracted from the natural material have antibacterial, antivirus, antiinflammatory, and preservative effect. The preserve efficacy testing between aroma oils and parabens as an artificial preservative had been performed and then it had been suggested that aroma oil was possibile to apply to the cosmetics. Aroma oils were pine, rosemary, lemon and eucalyptus, and parabens were methylparaben, blitylparaben. Antiseptic concentrations of aroma oils and parabens having 0.0, 0.1, 0.2, 0.4, 0.8, 1.0wt% were tested respectively. Escherichia coil(ATCC No.8739), Pseudomonas aeruginosa(ATCC No. 9027) which are gram-negative and Staphylococcus aureus (ATCC No. 6538), Bacillus subtilis(ATCC No. 6633) which are gram-positive were used as the test organisms. Disk paper and broth dilution methods were used as the methods of preservative efficacy testing. The antibacterial activity of aroma oils and parabens for gram-positive were better than that for gram-negative. For the antibacterial activity aroma oils were better than parabens. Among the aroma oils, rosemary and pine having superior antibacterial activity were selected and blended to illuminate if there is any synergy, There was synergical effect and optimum ratio of aroma blend is 3 : 1(rosemary pine) in this study.

Antibacterial and phagocytosis control of natural extracts on S. mutans (S. mutans에 대한 천연추출물의 항균 및 탐식작용조절)

  • Kim, Min-Young;Hwang, Hye-Jeong;Kang, Kyung-hee
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.113-117
    • /
    • 2022
  • In this study, the antibacterial and phagocytosis regulation effects of Hordeum vulgare extract and pine needle extract on S. mutans, the causative bacteria of dental caries, were investigated. Ethanol extracts of domestic Hordeum vulgare powder and pine needle powder were used, and the antibacterial and phagocytic ability against S. mutans was confirmed according to the concentration of the extracts. As a result, S. mutans colony formation did not show a significant difference in the Hordeum vulgare extract but was significantly decreased in the pine needle extract. As a result of confirming the phagocytic ability of THP-1 cells for S. mutans, there was no significant difference in the Hordeum vulgare extract, but the phagocytic ability of immune cells was improved in the pine needle extract. Therefore, it suggests that pine needle extract can be used as a material for preventing dental caries.

Current Status of Lime Bordeaux Mixture Research using Properties of Lime based Minerals (석회계 광물 특성을 활용한 석회보르도액 연구 현황)

  • Kim, Young-Jin;Seo, Jun-Hyung;Kim, Yang-Soo;Cho, Kye-Hong;Cho, Jin-Sang
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.16-26
    • /
    • 2022
  • Limestone is the largest mineral resource in South Korea and is used in various industries, particularly as a primary raw material in the cement and iron industries. However, research on the utilization of limestone in fields such as agriculture, powder, and green chemistry is severely lacking. In this review, studies concerning the crop antibacterial industry using unslaked or slaked lime produced from limestone were analyzed. Reports regarding lime bordeaux mixture were also considered. By compiling research results, processing technologies for improving the antibacterial efficiency of lime bordeaux mixture are discussed. In addition, plans for the revitalization of research on crop antibacterial agents through the limestone processing industry were summarized.

Antibacterial mesoporous Sr-doped hydroxyapatite nanorods synthesis for biomedical applications

  • Gopalu Karunakaran;Eun-Bum Cho;Keerthanaa Thirumurugan;Govindan Suresh Kumar;Evgeny Kolesnikov;Selvakumar Boobalan
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.507-519
    • /
    • 2023
  • Postsurgical infections are caused by implant-related pathogenic microorganisms that lead to graft rejection. Hence, an intrinsically antibacterial material is required to produce a biocompatible biomaterial with osteogenic properties that could address this major issue. Hence, this current research aims to make strontium-doped hydroxyapatite nanorods (SrHANRs) via an ethylene diamine tetraacetic acid (EDTA)-enable microwave mediated method using Anodontia alba seashells for biomedical applications. This investigation also perceives that EDTA acts as a soft template to accomplish Sr-doping and mesoporous structures in pure hydroxyapatite nanorods (HANRs). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis reveals the crystalline and mesoporous structures, and Brunauer-Emmett-Teller (BET) indicates the surface area of all the samples, including pure HANRs and doped HANRs. In addition, the biocidal ability was tested using various implant-related infectious bacteria pathogens, and it was discovered that Sr-doped HANRs have excellent biocidal properties. Furthermore, toxicity evaluation using zebrafish reports the non-toxic nature of the produced HANRs. Incorporating Sr2+ ions into the HAp lattice would enhance biocompatibility, biocidal activity, and osteoconductive properties. As a result, the biocompatible HANRs materials synthesized with Sr-dopants may be effective in bone regeneration and antibacterial in-built implant applications.

A study on Antibacterial Finishing Materials and Application Areas in the Hospital - Focused on Antibiotic-resistant Bacteria (항균마감재료와 병원 내 적용 부위 고찰 - 항생제 내성균을 중심으로)

  • Kwon, Soonjung;Park, Yonghyun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.30 no.2
    • /
    • pp.15-22
    • /
    • 2024
  • Purpose: In general, cross-infection caused by bacteria occurs more in hospitals than in local communities. In most cases, infectious diseases spread through contact transmission (direct contact, indirect contact). This study tries to examine which places are most likely to detect infections bacteria and what materials should be used to effectively suppress the spread of infectious bacteria. Methods: Domestic and international literature have been reviewed to determine which bacteria are common and spread in which places. At the same time, antibacterial experiments for several finishing materials are performed to determine the survival period of bacteria for each material. The experiment is conducted mainly on antibiotic-resistant bacteria (MRSA, CRE, etc.) that have a high mortality rate and are very contagious. Results: MRSA has a high incidence in many hospital departments with surgery or immunocompromised patients, such as the elderly, organ transplant patients, and hemodialysis patients. There are experimental results that MRSA dies early in ceramics or silk wallpaper. CRE has a high incidence in hospital departments where there are many patients who are prone to bacteria entering the body directly, such as ventilator patients or critically ill patients with surgical wounds. There are experimental results that CRE dies early in silk wallpaper. In addition, bacteria die on the surface for a variety of reasons. Most MRSA and CRE develop in patients with impaired immunity or surgery, and rapidly die in copper or materials with antibacterial properties. Implications: If finishing materials surface with the ability to kill specific bacteria is used in the place where a large number of specific bacteria are detected, the spread of infectious diseases can be effectively controlled.

In Vitro Screening of Tannic Acid-based Eco-friendly Farming Material (notice no. 2-4-064) against Plant Pathogenic Bacteria (탄닌산을 함유한 친환경농자재(공시번호 2-4-064)의 식물병원세균 기내 억제효과)

  • Han, Kyu Suk;Ju, Ho-Jong;Hong, Jin Sung;Chung, Jong-Sang;Park, Duck Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.945-955
    • /
    • 2016
  • To date, chemical managements of plant bacterial diseases are complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. In this study, thus, we performed screening of eco-friendly farming material (notice no. 2-4-064) containing tannic acid as new antibacterial-activity against 7 plant bacterial pathogens: Pectobacterium carotovorum subsp. carotovorum (Pcc), Ralstonia solanacearum (Rs), Acidovorax avenae subsp. citrulli (Aac), Xanthomonas cirti pv. citri (Xcc), Erwinia pyrifoliae (Ep), Clavibacter michiganensis subsp. michiganensis (Cmm), and Streptomyces scabies (Sc), Initial screening of antibacterial effects of eco-friendly farming material was performed using the paper disk diffusion method and co-cultivation in broth culture. Tannic acid based eco-friendly farming material showed inhibitory effect against Pcc, Rs, Aac, Xcc, Cmm, and Ss, whereas it did not show inhibition zone against Ep. However, when it tested by co-cultivation in broth culture, it showed strong inhibition effect against all pathogens that declined growth curve compared to bacterial pathogen only. Interestingly, when we observed morphological changes on those pathogens by SEM, cell morphologies of 7 pathogens were slightly changed that seem to be malfunction in their cell envelope.