• Title/Summary/Keyword: antibacterial compound

Search Result 241, Processing Time 0.029 seconds

Studies on the Development of Natural Preservatives from Natural Products (전통식품 및 천연물에서 천연보존료 개발에 관한 연구)

  • Kim, Hee-Yun;Lee, Young-Ja;Hong, Ki-Hyoung;Kwon, Yong-Kwan;Lee, Ju-Yeun;Kim, So-Hee;Ha, Sang-Chunl;Cho, Hong-Yon;Chang, Ih-Seop;Lee, Chul-Won;Kim, Kil-Saeng
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1667-1678
    • /
    • 1999
  • Certain parts of 190 kinds of medicinal herbs and 171 kinds of original materials of food were extracted by methanol. The extracts were tested their microbial inhibition activities against several food spoilage microorganisms, Micrococcus luteus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli, Saccharomyces cerevisiae, Candida albicans, Penicillium citrinum, Aspergillus flavus and Aspergillus niger. The methanol extracts of Cornus officinalis, Evodia officinalis, Glycyrrhiza glabra, Salvia miltiorrhiza. Schizandrae fructus, Coptidis rhizoma, aroma hop and bitter hop were shown inhibitory effect on certain species of gram(+) bacteria. Aroma hop and bitter hop were shown inhibitory effect on certain species of gram(-) bacteria. The methanol extract of Salvia miltiorrhiza exhibited a strong antibacterial activities. It was purified by solvent fractionation, silicagel column chromatography, prep. TLC, prep. HPLC. The purified active substance was identified as cryptotanshinone by EIMS, $1^H-NMR,\;{13}^C-NMR$ and DEPT. Cryptotanshinone showed a strong antibacterial activity against gram positive bacteria $(MIC\;:\;3.91{\sim}62.50\;{\mu}g/mL)$. Especially, this compound was the most strong activity against Bacillus subtilis $(MIC\;:\;3.91\;{\mu}g/mL)$.

  • PDF

Antimicrobial and Antioxidative Activities of the Extracts from Walnut (Juglans regia L.) Green Husk (호두과피 추출물의 항산화 및 항균활성)

  • Han, Kook-Il;Kim, Mi ran;Jo, Bu Kyung;Kim, Min Ji;Kang, Min Joo;Park, Ki-hyoun;Koo, Ye eun;Kim, Byeongseong;Jung, Eui-Gil;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2015
  • Several studies suggest that regular consumption of walnuts may have beneficial effects against oxidative stress-mediated disease such as cancer. The present study reports the total phenolic and flavonoid contents, together with the antioxidant and antibacterial activities of several solvent extracts (methanol, n-hexane, ethyl acetate, n-butanol, and water) obtained from walnut (Juglans regia L.) green husk. MIC (minimal inhibitory concentration) values of the walnut extracts for 8 human pathogenic bacteria strain were determined using agar dilution method. Antioxidant activity of extracts were assessed using DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)) assays, EC50 of DPPH and ABTS scavenging activities, and determination of total phenolic and flavonoid content and its correlation with DPPH and ABTS scavenging capacities. Among the six extracts, ethyl acetate extract (EtOAc Ex) showed the highest antimicrobial activity at 3.2 mg/ml of MICs against Staphylococcus aureus SG511. Total flavonoids and polyphenol contents of EtOAc Ex were 42.48 mg of quercetin equivalents (QE)/g and 223.25 mg of gallic acid equivalents (GAE)/g respectively. The highest antioxidative potential was shown by the sample extracted with EtOAc Ex (EC50=13.43 μg/ml for DPPH and EC50=41.83 μg/ml for ABTS radical scavenging activity assay). These results showed that J. regia green husk extracts can be used as an easily accessible source of natural antibacterial agents and natural antioxidants.

In vitro, anti-Microbial Activity of a Novel Beta-lactam Antibiotics, YH-487 (새로운 ${\beta}-lactam$계 항생물질(H-487)의 in vitro 항균활성)

  • Kang, Heui-Il;Lee, Jong-Wook;Chung, Dong-Hyo;Won, Yu-Jung
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.23-29
    • /
    • 1997
  • To develop novel cephem antibiotics, We have synthesized a new compound, named YH-487, by attaching the thiol and aminothiazole residue to $C_3$ and $C_7$ position of 7-ACA, respectively. Several characteristics such as structure, antibiotic spectrum, action mechanism, stability against ${\beta}-lactamase$ and synergistic effect were investigated. Anti-bactericidal activity of YH-487 against gram-positive and gram-negative bacteria were superior to that of the other cephem antibiotics. We have examined the action mechanisms of YH-487 using penicillin binding protein (PBP) assay, and found that the bactericidal activity was obtained by inhibiting PBP-1A, PBP-1B and PBP-3. YH-487 showed synergistic effect with gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. In addition, YH-487 was effective against Enterobacter cloacae in combination with amikacin. Based on the above observations, YH-487 was classified as a novel third-generation ${\beta}-lactam$ antibiotics.

  • PDF

Inhibitory Effects of an Eicosanoid Biosynthesis Inhibitor, Benzylideneacetone, Against Two Spotted Spider Mite, Tetranychus urticae, and a Bacterial Wilt-causing Pathogen, Ralstonia solanacearum (아이코사노이드 생합성 저해제인 벤질리덴아세톤의 점박이응애(Tetranychus urticae)와 세균성풋마름병 세균(Ralstonia solanacearum)에 대한 억제효과)

  • Park, Ye-Sol;Kim, Min-Je;Lee, Geon-Hyung;Chun, Won-Soo;Yi, Young-Keun;Kim, Yong-Gyun
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.3
    • /
    • pp.185-189
    • /
    • 2009
  • A monoterpenoid compound, benzylideneacetone (BZA), is a metabolite of an entomopathogenic bacterium, Xenorhabdus nematophila. Its primary biological activity is an inhibitor of phospholipase $A_2$, which catalyzes the committed step of biosynthesis of various eicosanoids that are critically important to mediate insect immune responses. When BZA was applied to two-spotted spider mite, Tetranychus urticae, it exhibited a dose-dependent mortality in leaf-disc assay. Subsequently BZA was tested against T. urticae infesting apples in a field orchard, in which it showed a significant control efficacy, which was not statistically different with that of a commercial acaricide. BZA also had significant antibacterial activities against three species of plant pathogenic bacteria when it was added to the bacterial cultures, in which it showed the highest inhibitory activity against a bacterial wilt-causing pathogen, Ralstonia solanacearum. The bacterial pathogen caused significant disease symptom to young potato plants. However, BZA significantly suppressed the disease occurrence. This study suggests that BZA can be used to develop a novel crop protectant to control mite and bacterial pathogen.

Optimal Culture Conditions for Penicillium rubefaciens NNIBRFG5039 Possessing Antimicrobial Activity (항균활성 보유 Penicillium rubefaciens NNIBRFG5039의 최적배양 조건)

  • Hwang, Hye Jin;Mun, Hye Yeon;Hwang, Buyng Su;Nam, Young Ho;Chung, Eu Jin
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • In screening for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) KCCM 40510 and Bacillus cereus KCTC 3624, NNIBRFG5039 was isolated from the air in Sangju-si, Gyeongsangbuk-do. Based on a high sequence similarity of the internal transcribed spacer (ITS) region, NNIBRFG5039 was determined to be closely related to Penicillium rubefaciens CBS 139145. The optimal media, initial pH, and temperature for mycelial growth and antimicrobial activity of P. rubefaciens NNIBRFG5039 were determined as follows: potato dextrose broth (PDB), pH 6.5, and 30℃, respectively. Under the optimal culture conditions, maximum mycelial growth (12.4 g L-1) and antibacterial activity (7.5 mm zone of inhibition against MRSA KCCM 40510, and 5.0 mm zone of inhibition against B. cereus KCTC 3624) were observed in a 5 L stirred-tank fermenter. We also isolated the antimicrobial compound from an ethyl acetate fraction, and its chemical structure was identified as (S)-6-hydroxymellein (1) by ESI-MS, 1H-NMR, and 13C-NMR. Consequently, the extract from P. rubefaciens NNIBRFG5039 may be used in functional materials for antimicrobial-related applications.

UPLC Analysis of Pinocembrin and Antimicrobial Activity of Propolis Collected from Different Regions in Korea (지역별 국산 프로폴리스의 항균활성 및 Pinocembrin의 UPLC 분석)

  • Kim, Se Gun;Hong, In Pyo;Woo, Soon Ok;Jang, Hye Ri;Han, Sang Mi
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2017
  • Propolis, natural antibacterial agent, which has been used traditional medicine across the globe, is resinous mixture to include abundant bioactive substances. In present study, we investigated antimicrobial activity according to quality characteristics of propolis collected from 9 different regions in Korea. Antimicrobial activity was evaluated by measuring growth inhibition zone using agar well diffusion method against Streptococcus mutans. Constituents analysis of propolis samples were measured through total phenolic contents, total flavonoid contents and quantitative analysis of major compound (pinocembrin) by ultra performance liquid chromatography. As a result, 9 different propolis (10mg/mL) and pinocembrin (1mg/mL) showed antimicrobial activity that has growth inhibition zone more than 11.9mm on S. mutans. The total flavonoid contents of 8 different propolis excluding Jeju island were in compliance with standard of health functional food in Korea and were found to affect antimicrobial activity on S. mutans when contained over 10mg/g. In addition, when content of pinocembrin in propolis was ranged from 12mg/g to 32mg/g, each propolis excluding Jeju island exhibited antimicrobial activity alike. These results indicate that pinocembrin plays a important role for antimicrobial activity of propolis collected from 8 different regions in Korea, and that it can be used as basic data for standardization of Korean propolis.

Antioxidant and Antimicrobial Activities of Various Citrus Peels (감귤류 종류에 따른 과피의 산화방지 및 항균 활성)

  • Choi, Hyeonjeong;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.356-363
    • /
    • 2022
  • To investigate the functional activity of different citrus fruit peels, antioxidant compounds in 70% ethanol extracts of mandarin, lemon, orange, and grapefruit peel powders were identified, and antioxidant and antibacterial activities were quantitated. Mandarin peel contained the highest content of total phenolic compounds and total flavonoid substances (21.46±0.12 mg GAE/g and 11.57±0.05 mg RE/g, respectively). The total phenolic compound content of the three other citrus fruits was 14.16±0.18-18.44±0.07, and their total flavonoid content was 5.51±0.10-7.46±0.09 mg RE/g. DPPH radical scavenging activity was the highest in lemon peel (87.64±0.21%), and mandarin peel displayed the best antioxidant activity with respective ABTS radical scavenging activity and FRAP measurements of 43.20±0.61% and 78.82±1.06 mM TE/g. Grapefruit peel antimicrobial activity increased with treatment time, and was the most potent among the four tested citrus species, inhibiting Staphylococcus aureus by about 4.05 log cycle. These findings demonstrate that mandarin and grapefruit peel can be used to prevent oxidation, improve food storage capabilities, and potentially preserve food quality.

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes (3T3-L1 세포에서 상엽이 유발하는 AMPK signaling pathway를 통한 adipogenesis 억제에 관한 연구)

  • Ji, Seon Young;Jeon, Keong Yoon;Jeong, Jin Woo;Hong, Su Hyun;Huh, Man Kyu;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.155-163
    • /
    • 2017
  • Mori Folium, the leaf of Morus alba, is a traditional medicinal herb that shows various pharmacological activities such as antiinflammatory, antidiabetic, antimelanogenesis, antioxidant, antibacterial, antiallergic, and immunomodulatory activities. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis remain poorly understood. In the present study, we investigated the inhibition of adipocyte differentiation and adipogenesis by ethanol extracts of Mori Folium (EEMF) in 3T3-L1 preadipocytes. Treatment with EEMF suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in the lipid droplet number and lipid content through Oil Red O staining. EEMF significantly reduced the accumulation of cellular triglyceride, which is associated with a significant inhibition of pro-adipogenic transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$), and CCAAT/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) and ${\beta}$ ($C/EBP{\beta}$). In addition, EEMF potentially downregulated the expression of adipocyte-specific genes, including adipocyte fatty acid binding protein (aP2) and leptin. Furthermore, EEMF treatment effectively increased the phosphorylation of the AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase (ACC); however, treatment with a potent inhibitor of AMPK, compound C, significantly restored the EEMF-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results together indicate that EEMF has preeminent effects on the inhibition of adipogenesis through the AMPK signaling pathway, and further studies will be needed to identify the active compounds in Mori Folium.

Characterization of compounds and quantitative analysis of oleuropein in commercial olive leaf extracts (상업용 올리브 잎 추출물의 화합물 특성과 이들의 oleuropein 함량 비교분석)

  • Park, Mi Hyeon;Kim, Doo-Young;Arbianto, Alfan Danny;Kim, Jung-Hee;Lee, Seong Mi;Ryu, Hyung Won;Oh, Sei-Ryang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Olive (Olea europaea L.) leaves, a raw material for health functional foods and cosmetics have abundant polyphenols including oleuropein (major bioactive compound) with various biological activities: antioxidant, antibacterial, antiviral, anticancer activity, and inhibit platelet activation. Oleuropein has been reported as skin protectant, antioxidant, anti-ageing, anti-cancer, anti-inflammation, anti-atherogenic, anti-viral, and anti-microbial activity. Despite oleuropein is the important compound in olive leaves, there is still no quantitative approach to reveal oleuropein content in commercial products. Therefore, a validated method of analysis has to develop for oleuropein. In this study, the components and oleuropein content in 10 types of products were analyzed using a developed method with ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry, charge of aerosol detector, and photodiode array. The total of 18 compounds including iridoids (1, 3, 4, 14, and 16-18), coumarin (2), phenylethanoids (5, 9, and 11), flavonoids (6-8, 10, 12, and 13), lignan (15), were tentatively identified in the leaves extract based high resolution mass spectrometry data, and the content of oleuropein in each product was almost identical between two detection methods. The oleuropein in three commercial product (A, G, H) was contained more over the suggested content, and it of five products (B, E, H, I, J) were analyzed within 5-10% error range. However, the two products (C, D) were found far lower than suggested contents. This study provides that analytical results of oleuropein could be a potential information for the quality control of leaf extract for a manufactured functional food.