• Title/Summary/Keyword: anti-tumor growth

Search Result 582, Processing Time 0.036 seconds

Anti-cancer Mechanism of Docosahexaenoic Acid in Pancreatic Carcinogenesis: A Mini-review

  • Park, Mirae;Kim, Hyeyoung
    • Journal of Cancer Prevention
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Pancreatic cancer is a highly aggressive malignant tumor of the digestive system and radical resection, which is available to very few patients, might be the only possibility for cure. Since therapeutic choices are limited at the advanced stage, prevention is more important for reducing incidence in high-risk individuals with family history of pancreatic cancer. Epidemiological studies have shown that a high consumption of fish oil or ${\omega}3-polyunsaturated$ fatty acids reduces the risk of pancreatic cancers. Dietary fish oil supplementation has shown to suppress pancreatic cancer development in animal models. Previous experimental studies revealed that several hallmarks of cancer involved in the pathogenesis of pancreatic cancer, such as the resistance to apoptosis, hyper-proliferation with abnormal $Wnt/{\beta}-catenin$ signaling, expression of pro-angiogenic growth factors, and invasion. Docosahexaenoic acid (DHA) is a ${\omega}3-polyunsaturated$ fatty acid and rich in cold oceanic fish oil. DHA shows anti-cancer activity by inducing oxidative stress and apoptosis, inhibiting $Wnt/{\beta}-catenin$ signaling, and decreasing extracellular matrix degradation and expression of pro-angiogenic factors in pancreatic cancer cells. This review will summarize anti-cancer mechanism of DHA in pancreatic carcinogenesis based on the recent studies.

Bufalin, a Traditional Oriental Medicine, Induces Apoptosis in Human Cancer Cells

  • Takai, Noriyuki;Kira, Naoko;Ishii, Terukazu;Yoshida, Toshie;Nishida, Masakazu;Nishida, Yoshihiro;Nasu, Kaei;Narahara, Hisashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.399-402
    • /
    • 2012
  • Bufalin is a traditional oriental medicines which induces apoptosis in some lines of human tumor cells. It constitutes the major digoxin-like immunoreactive component of Chan Su, obtained from the skin and parotid venom glands of toads. Bufalin is cardioactive C-24 steroids that exhibits a variety of biological activities, such as cardiotonic, anaesthetic, blood pressure stimulatory, respiratory and antineoplastic effects. In terms of its anti-tumor activity, bufalin has been demonstrated to inhibit the growth of tumors, such as endometrial and ovarian cancers. This commentary introduces biologic and therapeutic effects of bufalin in treating some cancers. The compound is able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and expression of genes related to the malignant phenotype in human cancer cells.

Recent Progress in HER2 Associated Breast Cancer

  • Wang, Wei-Jia;Lei, Yuan-Yuan;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2591-2600
    • /
    • 2015
  • Breast cancer is the most common cancer worldwide among women and the second most common cancer. Approximately 15-23% of breast cancers over-express human epidermal growth factor receptor2 (HER2), a 185-kDa transmembrane tyrosine kinase, which is mainly found at the cell surface of tumor cells. HER2-positive breast cancer, featuring amplification of HER2/neu and negative expression of ER and PR, has the three following characteristics: rapid tumor growth, lower survival rate, and better response to adjuvant therapies. Clinically, it is notable for its role in a pathogenesis that is associated with increased disease recurrence and acts as a worse prognosis. At the same time, it represents a good target for anti-cancer immunotherapy despite the prevalence of drug resistance. New treatments are a major topic of research, and a brighter future can be expected. This review discusses the role of HER2 in breast cancer, therapeutic modalities available and prognostic factors.

Molecular Nuclear imaging of Angiogenesis (혈관신생 분자핵의학 영상)

  • Lee, Kyung-Han
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

Effect of Bamboo salt-pro on carries-inducing properties of Streptococcus mutans

  • Shin, Hye-Young;You, Hyeon-Hee;Shin, Tae-Yong;Kim, Hyung-Min;You, Yong-Ouk
    • Advances in Traditional Medicine
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • We studied the effect of Bamboo salt-pro on the growth and acid production of S. mutans. The growth of S.mutans was reduced by the presence of the Bamboo salt-pro (1 mg/ml) and NaCl (1 mg/ml) significantly, and the positive control group (1 % of NaF) also exhibited antibacterial activity significantly. Bamboo salt-pro (1 mg/ml) reduced the rate of acid production by S. mutans. Bamboo salt alone did not demonstrate such a reduction in acid production at the concentration of 1 mg/ml. The inhibitory action of Bamboo salt-pro on acid production was found at a concentration of 1 mg/ml, but bamboo salt alone was not at a concentration of 1 mg/ml. In addition, we investigated the anti-inflammatory effect of Bamboo salt-pro on human mast cell line HMC-1. Bamboo salt-pro (0.1 and 0.01 mg/ml) inhibited significantly the secretion of inflammatory cytokine, tumor necrosis factor-a with $59.47{\pm}0.15%$, $51.98{\pm}0.16%$ respectively. Our results suggest that Bamboo salt-pro importantly contributes to the prevention or treatment of periodontitis and other oral diseases and inflammatory diseases.

Screening of the Antigen Epitopes of Basic Fibroblast Growth Factor by Phage Display

  • Xiang, Junjian;Zhong, Zhenyu;Deng, Ning;Zhong, Zhendong;Yang, Hongyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.290-293
    • /
    • 2005
  • In order to investigate the epitope of basic fibroblast growth factor (bFGF) and its immunogenicity, the epitopes of bFGF were screened from the phage display library with monoclonal antibody GF22, which can neutralize the bio-activity of bFGF. By three rounds of screening, the positive phage clones with bFGF epitopes were selected, which can effectively block the bFGF to bind with GF22. Sequence analysis showed that the epitopes shared a highly conservative sequence (Leu-Pro-Pro/Leu-Gly-His-Phe/Ile-Lys). The sequence of PPGHFK was located at 22-27 of the bFGF. The specific immuno-response of mouse could be highly induced by phage clones with the epitopes. And the anti-bFGF activity induced by LPGHFK was 3 times higher than the original sequence, which showed that the mimetic peptide LPLGHIK might be used as a tumor vaccine in the prevention and treatment of tumor.

Benefits of Metformin Use for Cholangiocarcinoma

  • Kaewpitoon, Soraya J;Loyd, Ryan A;Rujirakul, Ratana;Panpimanmas, Sukij;Matrakool, Likit;Tongtawee, Taweesak;Kootanavanichpong, Nusorn;Kompor, Ponthip;Chavengkun, Wasugree;Kujapun, Jirawoot;Norkaew, Jun;Ponphimai, Sukanya;Padchasuwan, Natnapa;Pholsripradit, Poowadol;Eksanti, Thawatchai;Phatisena, Tanida;Kaewpitoon, Natthawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8079-8083
    • /
    • 2016
  • Metformin is an oral anti-hyperglycemic agent, which is the most commonly prescribed medication in the treatment of type-2 diabetes mellitus. It is purportedly associated with a reduced risk for various cancers, mainly exerting anti-proliferation effects on various human cancer cell types, such as pancreas, prostate, breast, stomach and liver. This mini-review highlights the risk and benefit of metformin used for cholangiocarcinoma (CCA) prevention and therapy. The results indicated metformin might be a quite promising strategy CCA prevention and treatment, one mechanism being inhibition of CCA tumor growth by cell cycle arrest in both in vitro and in vivo. The AMPK/mTORC1 pathway in intrahepatic CCA cells is targeted by metformin. Furthermore, metformin inhibited CCA tumor growth via the regulation of Drosha-mediated expression of multiple carcinogenic miRNAs. The use of metformin seems to be safe in patients with cirrhosis, and provides a survival benefit. Once hepatic malignancies are already established, metformin does not offer any therapeutic potential. Clinical trials and epidemiological studies of the benefit of metformin use for CCA should be conducted. To date, whether metformin as a prospective chemotherapeutic for CCA is still questionable and waits further atttention.

Anti-metastatic Potential of Ethanol Extract of Saussurea involucrata against Hepatic Cancer in vitro

  • Byambaragchaa, Munkhzaya;de la Cruz, Joseph;Yang, Seung Hak;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5397-5402
    • /
    • 2013
  • The rates of morbidity and mortality of hepatocellular carcinoma (HCC) have not lessened because of difficulty in treating tumor metastasis. Mongolian Saussurea involucrata (SIE) possesses various anticancer activities, including apoptosis and cell cycle arrest. However, detailed effects and molecular mechanisms of SIE on metastasis are unclear. Thus, the present study was undertaken to investigate antimetastatic effects on HCC cells as well as possible mechanisms. Effects of SIE on the growth, adhesion, migration, aggregation and invasion of the SK-Hep1 human HCC cell line were investigated. SIE inhibited cell growth of metastatic cells in dose- and time-dependent manners. Incubation of SK-Hep1 cells with $200-400{\mu}g/mL$ of SIE significantly inhibited cell adhesion to gelatin-coated substrate. In the migration (wound healing) and aggregation assays, SIE treated cells showed lower levels than untreated cells. Invasion assays revealed that SIE treatment inhibited cell invasion capacity of HCC cells substantially. Quantitative real time PCR showed inhibitory effects of SIE on MMP-2/-9 and MT1-MMP mRNA levels, and stimulatory effects on TIMP-1, an inhibitor of MMPs. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by SIE, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 expression of SK-Hep1 cells. From these results, it was suggested that SIE could be used as potential anti-tumor agent.

Water Extract of Allium sativum L. Induces Apoptosis in Human Leukemia U937 Cells through Reactive Oxygen Species Generation (마늘 열수 추출물의 활성산소중 생성을 통한 인체백혈병세포의 apoptosis 유발)

  • Choi, Yung-Hyun
    • Food preservation and processing industry
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2008
  • The health benefits of garlic (Allium sativum L.) are derived from a wide variety of components and from the different ways it is administered. The known health benefits of garlic include cardiovascular protective effects, stimulation of immune function, reduction of blood glucose level, protection against microbial, viral and fungal infections, as well as anticancer effects. In the present study, it was examined the effects of water extract of A. sativum (WEAS) on the growth of cultured human tumor cells in order to investigate its anti-proliferative mechanism. Treatment of WEAS to tumor cells resulted in the growth inhibition, especially in leukemia cells, which was associated with induction of G2/M arrest of the cell cycle and apoptosis. In order to further explore the critical events leading to apoptosis in WEAS-treated U937 human leukemia cells, the following effects of WEAS on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 and IAP family proteins. The cytotoxic effect of WEAS was mediated by its induction of apoptosis as characterized by the occurrence of DNA ladders, apoptotic bodies and chromosome condensation in U937 cells. The WEAS-induced apoptosis in U937 cells was correlated with the generation of intracellular ROS, collapse of MMP, activation of caspase-3 and down-regulation of anti-apoptotic proteins. The quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against WEAS-elicited ROS generation, caspase-3 activation, G2/M arrest and apoptosis. In conclusion, the present study reveals that the cellular ROS generation plays a pivotal role in the initiation of WEAS-triggered apoptotic death in U937 cells.

  • PDF

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.