• Title/Summary/Keyword: anti-tumor drugs

Search Result 163, Processing Time 0.024 seconds

Glioblastoma in a Pekingese (페키니즈견의 아교모세포종 증례)

  • Cho, Hyun-kee;Yoo, Dae-Young;Kang, Joo-yeon;Lee, Kwon-Young;Hwang, In-Koo;Choi, Jung-Hoon;Chung, Jin-Young
    • Journal of Veterinary Clinics
    • /
    • v.32 no.6
    • /
    • pp.544-547
    • /
    • 2015
  • An 11-year-old, intact male Pekingese was brought to the Veterinary Teaching Hospital of Kangwon National University with a 10-day history of seizures. Fifteen days before coming to Kangwon National University, the dog had visited a local animal hospital for lameness, and non-steroidal anti-inflammatory drugs were prescribed to treat this symptom. However, 10 days before coming to our hospital, the dog experienced generalized seizures. Two days before his arrival, generalized ataxia and mental dullness also occurred. Our examinations revealed no remarkable findings on a routine blood test or X-ray. However, the neurological examinations confirmed mental dullness, generalized ataxia, and a lack of menace response and pupillary light reflexes. Nine hours later, dyspnea occurred, and 12 hours after that, the patient was euthanized per the client's request. A necropsy of transverse sections confirmed the presence of a prominent midline shift due to extended tumor growth. On histopathological analyses, pseudopalisading necrosis of the glial cells and microvascular proliferation were observed. In immunohistochemical analysis, glial fibrillary acidic protein, proliferating cell nuclear antigens, and ionized calcium binding adaptor molecule 1 immunoreactive cells were observed in the tumor area. Based on the results, the tumor was confirmed to be a glioblastoma. Primary intracranial tumors are rare in the veterinary field. This case report describes the clinical and histopathological findings of glioblastoma in a Pekingese.

Inhibitory Effect of the Hexane Extract of Saussurea lappa on the Growth of LNCaP Human Prostate Cancer Cells (목향 헥산추출물의 LNCaP 전립선암세포 증식 억제 효과)

  • Park, So-Young;Kim, Eun-Ji;Lim, Do-Young;Kim, Jong-Sang;Lim, Soon-Sung;Shin, Hyun-Kyung;Yoon Park, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.8-15
    • /
    • 2008
  • Saussurea lappa (SL) has been used to reduce abdominal pain and tenesmus in traditional oriental medicine. SL and major compounds of SL, sesquiterpene lactones, have been suggested to possess various biological effects, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral and cardiotonic activities. Recently, it has been reported that ethanol extracts from roots of SL have antiproliferative effects on gastric cancer cells. To explore the possibility that SL has chemopreventive effects on prostate cancer, we examined whether the hexane extract of SL (HESL) inhibits the growth of LNCaP human prostate cancer cells. Cells were incubated with various concentrations ($0{\sim}4$ mg/L) of HESL in DMEM/F12 containing 5% charcoal stripped fetal bovine serum. HESL substantially decreased viable cell numbers and induced apoptosis of LNCaP cells in dose-dependent manners. HESL increased the levels of cleaved caspase-8, -9, -7 and -3, and poly (ADP-ribose) polymerase. HESL increased the levels of the pro-apoptotic Bak and truncated-Bid proteins whereas it had no effect on the anti-apoptotic Bcl-2, Bcl-xL, or Mcl-1. The present results indicate that HESL inhibits the growth of human prostate cancer cells by inducing apoptosis, which involves the activation of the caspase cascades.

Studies on the Anti-inflammatory and Anti-apoptotic Effect of Catalposide Isolated from Catalpa ovata (개오동나무에서 추출(抽出)한 Catalposide의 항염(抗炎) 및 세포고사(細胞枯死) 억제효과(抑制效果)에 관(關)한 연구(硏究))

  • Oh, Cheon-Sik;Hwang, Sang-Wook;Kim, Yong-Woo;Song, Dal-Soo;Chae, Young-Seok;Jeong, Jong-Gil;Song, Ho-Joon;Shin, Min-Kyo
    • The Korea Journal of Herbology
    • /
    • v.20 no.3
    • /
    • pp.29-41
    • /
    • 2005
  • Objectives : The use of natural products with therapeutic properties is as ancient as human civilisation and, for a long time, mineral, plant and animal products were the main sources of drugs. Catalposide, the major iridoid glycoside isolated from the stem bark of Catalpa ovata G. Don (Bignoniceae) has been shown to possess anti-microbial and anti-tumoral properties. Heme oxygenase-1 (HO-1) is a stress response protein and is known to play a protective role against the oxidative injury. In this study, we examined whether catalposide could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 protein expression and HO activity. We also examined the effects of catalposide on the productions of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and nitric oxide (NO) on RAW 264.7 macrophages activated with the endotoxin lipopolysaccharide. Methods : HO-1 expression in Neuro 2A cells was measured by Western blotting analysis. NO and $TNF--{\alpha}$ produced by RAW 264.7 macrophage were measured by Griess reagent and enzyme-linked immunosorbent assay, respectively. Results : The treatment of the cells with catalposide resulted in dose- and time-dependent up-regulations of both HO-1 protein expression and HO activity. Catalposide protected the cells from hydrogen peroxide-induced cell death. The protective effect of catalposide on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX, a HO inhibitor. Additional experiments revealed the involvement of CO in the cytoprotective effect of catalposide-induced HO-1. In addition, catalposide inhibited the productions of $TNF--{\alpha}$ and NO with significant decreases in mRNA levels of $TNF--{\alpha}$ and inducible NO synthase. Conclusions : Our results indicate that catalposide is a potent inducer of HO-1 and HO-1 induction is responsible for the catalposide-mediated cytoprotection against oxidative damage and that catalposide may have therapeutic potential in the control of inflammatory disorders.

  • PDF

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

RNAi and miRNA in Viral Infections and Cancers

  • Mollaie, Hamid Reza;Monavari, Seyed Hamid Reza;Arabzadeh, Seyed Ali Mohammad;Shamsi-Shahrabadi, Mahmoud;Fazlalipour, Mehdi;Afshar, Reza Malekpour
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7045-7056
    • /
    • 2013
  • Since the first report of RNA interference (RNAi) less than a decade ago, this type of molecular intervention has been introduced to repress gene expression in vitro and also for in vivo studies in mammals. Understanding the mechanisms of action of synthetic small interfering RNAs (siRNAs) underlies use as therapeutic agents in the areas of cancer and viral infection. Recent studies have also promoted different theories about cell-specific targeting of siRNAs. Design and delivery strategies for successful treatment of human diseases are becomingmore established and relationships between miRNA and RNAi pathways have been revealed as virus-host cell interactions. Although both are well conserved in plants, invertebrates and mammals, there is also variabilityand a more complete understanding of differences will be needed for optimal application. RNA interference (RNAi) is rapid, cheap and selective in complex biological systems and has created new insight sin fields of cancer research, genetic disorders, virology and drug design. Our knowledge about the role of miRNAs and siRNAs pathways in virus-host cell interactions in virus infected cells is incomplete. There are different viral diseases but few antiviral drugs are available. For example, acyclovir for herpes viruses, alpha-interferon for hepatitis C and B viruses and anti-retroviral for HIV are accessible. Also cancer is obviously an important target for siRNA-based therapies, but the main problem in cancer therapy is targeting metastatic cells which spread from the original tumor. There are also other possible reservations and problems that might delay or even hinder siRNA-based therapies for the treatment of certain conditions; however, this remains the most promising approach for a wide range of diseases. Clearly, more studies must be done to allow efficient delivery and better understanding of unwanted side effects of siRNA-based therapies. In this review miRNA and RNAi biology, experimental design, anti-viral and anti-cancer effects are discussed.

Pharmacological Effect of Decursin, Decursinol Angelate, and Decursinol Derived from Angelica gigas Nakai (참당귀(Angelica gigas Nakai) 유래 decursin, decursinol 그리고 decursinol angelate의 약리 효과)

  • Kang, Jae Seon
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1128-1141
    • /
    • 2021
  • 'Angelica' is one of the most traditionally consumed medicinal herbs around Northeast Asia including Korea for treatments of various diseases or health care purposes like hematopoiesis, blood circulation for women, sedative, analgesic, and a tonic medicine etc. Angelica gigas Nakai, a Korean native species of Angelica, is clearly different from the others in containing a high concentration of active ingredients like pyranocoumarines including decursin, decursinol, and decursinol angelate. These compounds have various kinds of positive effects such as anti-tumor activity including the precaution of neutropenia occurred during anticancer drug administration, improvements of metabolic disorders, menstrual irregularity, impairment of renal function, respiration improvement, cognition-enhancement, anti-inflammatory effect, anti-oxidative effect, enhancing fertility and so forth. Thus it implies incredible potentialities in future development for foods and drugs. However, certain purity-related qualities and/or overdose in food products can cause side effects like toxicities; therefore, their safety profiles should also be considered. This review focuses on the positive and negative effects of three pyranocoumarines in Angelica gigas Nakai and some possibilities and considerations for future food and drug products development.

Laminin-1 Expression in Bone Marrow Stromal Cells of Cyclophosphamide-treated Rat (Cyclophosphamide가 흰쥐 골수의 기질세포에서 Laminin-1의 발현에 미치는 영향)

  • Lee, Chang-Hun;Chung, Ho-Sam;Paik, Doo-Jin;Hwang, Se-Jin;Kim, Won-Kyu;Youn, Jee-Hee;Kim, Chong-Kwan
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.385-398
    • /
    • 2002
  • The purpose of the present study is to investigate whether stromal cells supporting specific microenvironment for hematopoiesis of bone marrow are affected by toxicants and therapeutic drugs such as antibiotics and anticancer drugs and whether laminin-1 is associated with such effects. SD rats were intraperitoneally injected with 75 mg/kg of cyclophosphamide which is widely used to treat infant's solid tumor, leukemia and myeloma and sacrificed after 3 days, 1 week, 3 weeks or 5 weeks of injection. The bone marrow extracted and paraffin-sectioned was analyzed using immunohistochemical staining. A part of tissues was subjected to electron microscopy following reaction with rabbit anti-laminin antibody, biotinylated goat anti-rabbit IgG conjugated with 12 nm gold particles, and staining with uranyl acetate. 1. The bone marrow tissue at day 3 post injection with cyclophosphamide displayed dilated venous sinus, partial necrotic death, and decreased number of hematopoietic cells. Laminin-1 was intensively stained in the reticular and adipose tissues. 2. Up to 5 weeks post injection, laminin-1 was stained at a low level in the stromal tissue of bone marrow and the number of hematopoietic cell was increased. 3. Deposition of the gold particle which represents laminin-1 expression was observed at the highest level in the stromal cells of bone marrow obtained 3 days after injection, and decreased after 1 to 5 weeks. These results suggest that stromal cells which play a role in supporting microenvironment for bone marrow hematopoiesis augment induction of laminin-1 expression and activation upon administration of cyclophosphamide.

A Case Report of Squamous Cell Lung Cancer Patient Treated with Allergen Removed Rhus Verniciflua Stokes Extract (알레젠 제거 옻나무 추출물 투여로 생존기간이 연장된 편평세포폐암 환자 1례)

  • Kim, Eun-Hee;Park, So-Jeong;Choi, Won-Cheol;Lee, Soo-Kyung
    • Journal of Korean Traditional Oncology
    • /
    • v.16 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • Background : Lung cancer is one of the most common malignancy in the world. Types of lung cancer are Non small cell lung cancer and small cell lung cancer. Subtypes of Non small cell lung cancer are adenocarcinoma, squamous cell carcinoma and large cell carcinoma. Knowing the type of lung cancer is important in determining both treatment and prognosis. Recently, due to newly developed anti-cancer drugs, squamous cell carcinoma has relatively poor prognosis than non-squamous cell carcinoma. Case : We report a squamous cell lung cancer case treated with allergen removed Rhus verniciflua Stokes (aRVS) extract. The patients initially diagnosed stage squamous cell lung carcinoma, but she refused recommended operation. She initiated aRVS extract monotherapy in October. 2006. The follow up Computed tomography in March. 2007, she diagnosed stable disease of tumor response on aRVS treatment. However, this case was lost to follow up for 6 months while she was treated with tomotherapy. In October 2007, she came back to our cancer center after diagnosed stage IV metastasized lung to lung, and aRVS monotherapy was restarted. She had survived 2 years after metastasis of squamous cell lung carcinoma. Conclusion : Allergen removed Rhus verniciflua Stokes(aRVS) sucessfully prolonged overall survival of a squamous cell lung cancer patient.

Low-dose Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibition of EGFR Mutation-positive Lung Cancer: Therapeutic Benefits and Associations Between Dosage, Efficacy and Body Surface Area

  • Hirano, Ryosuke;Uchino, Junji;Ueno, Miho;Fujita, Masaki;Watanabe, Kentaro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.785-789
    • /
    • 2016
  • A key drug for treatment of EGFR mutation-positive non-small cell lung cancer is epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). While the dosage of many general anti-tumor drugs is adjusted according to the patient body surface area, one uniform dose of most TKIs is recommended regardless of body size. In many cases, dose reduction or drug cessation is necessary due to adverse effects. Disease control, however, is frequently still effective, even after dose reduction. In this study, we retrospectively reviewed the characteristics of 26 patients at Fukuoka University Hospital between January 2004 and January 2015 in whom the EGFR-TKI dose was reduced with respect to progression free survival and overall survival. There were 10 and 16 patients in the gefitinib group and the erlotinib group, respectively. The median progression-free survival in the gefitinib group and the erlotinib group was 22.4 months and 14.1 months, respectively, and the median overall survival was 30.5 months and 32.4 months, respectively. After stratification of patients by body surface area, the overall median progression-free survival was significantly more prolonged in the low body surface area (<1.45 m2) group (25.6 months) compared to the high body surface area (>1.45 m2) group (9.7 months) (p=0.0131). These results indicate that low-dose EGFR-TKI may sufficiently control disease without side effects in lung cancer patients with a small body size.