• 제목/요약/키워드: anti-swelling efficiency (ASE)

검색결과 5건 처리시간 0.017초

Improvement of Dimensional Stability of Acacia mangium Wood by Heat Treatment: A Case Study of Vietnam

  • Tran, Van Chu
    • Journal of Forest and Environmental Science
    • /
    • 제29권2호
    • /
    • pp.109-115
    • /
    • 2013
  • Fast-grown wood generally contains a high proportion of juvenile wood that results in inferior dimensional stability and durability against biological deteriorations. In the present research, the Acacia mangium wood from plantation forests in Vietnam was treated with high temperature in air. The effects of heat treatment on physical properties of Acacia mangium wood, including mass loss (ML), water absorption (WA), water-repellent effectiveness (WRE) and anti-swelling efficiency (ASE) were examined. The results showed that the dimensional stability and the water-repellent effectiveness are increased by about 15-46% and 8-18%, respectively. However, the mass and dimension of wood are decreased. The results also indicated that both treatment temperature and treatment duration significantly affect the wood properties of Acacia mangium. It is thus concluded that heat treatment demonstrates an interesting potential to improve the wood quality of Acacia mangium for solid timber products. This technology provides an environmentally safe method of protecting sustainable common woods to give a new generation of value-added biomaterials with increased stability without the use of toxic chemicals.

Quality Enhancement of Falcataria-Wood through Impregnation

  • SUMARDI, Ihak;DARWIS, Atmawi;SAAD, Sahriyanti;ROFII, Muhammad Navis
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.722-731
    • /
    • 2020
  • The purpose of this research is to determine the efficiency of impregnation using phenol formaldehyde resin to enhance Falcataria wood's stability and better mechanical properties. Impregnation process was carried out after moisture content stabilized at 12% on samples with a dimension of 20 mm × 20 mm × 300 mm at various concentrations and pressure time. Dimensional stability was evaluated by thickness swelling (TS) and anti-swelling efficiency (ASE) and the young's modulus was conducted according to BS 573. The mechanical properties and dimensional stability of impregnated wood were evaluated. Dimensional stability and mechanical properties of Falcataria wood were successfully increased after impregnation. PF impregnation can improve the mechanical properties and the density from 0.26 g/㎤ to 0.30 g/㎤ even with only 10% of weight percent grain. Dimensional stability increases with increasing resin concentration and time pressure. The highest increase in mechanical properties was found at a higher concentration of PF. The penetration of PF into the wood's cell darkens the color of impregnated wood.

Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification

  • Deded Sarip NAWAWI;Andita MARIA;Rizal Danang FIRDAUS;Istie Sekartining RAHAYU;Adesna FATRAWANA;Fadlan PRAMATANA;Pamona Silvia SINAGA;Widya FATRIASARI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권2호
    • /
    • pp.133-144
    • /
    • 2023
  • Densification is an effective method for improving the physical and mechanical properties of low-density wood. However, the set-recovery of dimensions was found to be the problem of densified wood due to low fixation during the densification process. Alkali pretreatment before densification is thought to be a modification process to improve the dimensional stability of densified wood. In this research, the wood samples used were boiled in a 1.25 N sodium hydroxide (NaOH) solution at different times, followed by densification for 5 h at 100℃. The alkali pretreatment for 1, 3, and 5 h of boiling increased the dimensional stability of densified woods and anti-swelling efficiency values were 8.52%, 63.24%, and 48.94%, respectively. The boiling of wood in NaOH solution decreased the holocellulose content, as well as lignin to a lesser degree, and a lower crystallinity index was observed. The lower hydroxyl groups and a higher proportion of lignin in treated samples seem to have contributed to the high dimensional stability detected.

Physicomechanical Properties Enhancement of Fast-Growing Wood Impregnated with Wood Vinegar Animal Adhesive

  • Efrida BASRI;SAEFUDIN;Mahdi MUBAROK;Wayan DARMAWAN;Jamal BALFAS;Yelin ADALINA;Yusuf Sudo HADI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권6호
    • /
    • pp.542-554
    • /
    • 2023
  • This study is a continuation of our previous work, which focused on the resistance of jabon wood to termites after impregnation with wood vinegar (WV) and animal-based adhesive (kak). This paper presents the physicomechanical properties of fast-growing jabon wood impregnated with kak at two concentrations (8% and 10%) in wood vinegar or water as a solvent with and without 4% borax. The physical properties of the impregnation solution, that is, viscosity, density, pH, and solid content, were evaluated according to SNI 06-4567-1998. Some physical parameters, such as weight percent gain (WPG), density, water uptake, anti-swelling efficiency (ASE), crystallinity, and mechanical properties, i.e., modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength parallel to the grain (CS), of the impregnated wood were determined. Based on these results, wood impregnated using a mixture of kak in WV presented better physical (increased WPG, density, dimensional stability, and crystallinity) and mechanical (increased MOE/MOR and compression strength) properties than wood impregnated with a water solvent or untreated wood. The wood impregnated using WV and water solvent improved the physical and mechanical properties. The density of the wood increased by 44%-58% and 32%-47%, ASE radial-tangential increased by 38%-45%; 15%-28% after 24 h of water immersion, crystallinity increased by 59%-74%; 36%, MOE increased by 46%-57%; 28%-31%, MOR increased by 29%-34%; 14%-27%, and compression strength increased by 40%-76%; 38%-72% values to untreated wood.

열처리 잣나무 정각재의 재색 변화 및 물성 조사 (Investigation of the Color Change and Physical Properties of Heat-treated Pinus koraiensis Square Lumbers)

  • 임호묵;홍승현;강호양
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권1호
    • /
    • pp.13-19
    • /
    • 2014
  • 국내의 주 생산 수종인 잣나무 $90{\times}90mm$ 각재의 적정한 열처리 조건을 찾기 위해 3가지 열처리 스케줄을 적용하여 재색과 물성에 미치는 영향을 연구하였다. 1차 열처리시 온도는 $170^{\circ}C$$190^{\circ}C$, 시간은 예비가열시간 1시간을 포함하여 9시간과 13시간을 적용하였다. 2차와 3차 열처리는 모든 공시 각재에 동일하게 $190^{\circ}C$-9시간을 적용하였다. 열처리 횟수가 증가할수록 백색도 $L^*$는 직선적으로 감소하였으며 표준편차도 감소하였다. 열처리 횟수가 증가할수록 색차 ${\Delta}E^*$는 직선적으로 증가하였으며, 표준편차가 커지는 경향이 있었다. 알려진 바와 달리 열처리 시편의 평균 종압축강도가 무처리 시편보다 9% 높았다. 항팽윤율과 중량증가율을 측정하여 열처리 시편의 치수안정성이 무처리보다 크게 증가하였음을 보였다.