• Title/Summary/Keyword: anti-reflective layers

Search Result 17, Processing Time 0.029 seconds

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.

A Study on the Transmittance, Heat-Resistance, and Mechanical Properties of SiO2, TiO2 Anti-Reflective Single Layers Deposited on Sapphire Substrate by MOCVD (금속유기화학증착법으로 사파이어 기판에 증착된 단층 SiO2, TiO2 저반사막의 광 투과율, 내열성, 기계적 특성에 관한 연구)

  • Shim, Gyu-In;Eom, Hyengwoo;Kang, Hyung;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.672-679
    • /
    • 2014
  • To improve sensing capability of infrared, heat-resistance and mechanical properties, the $SiO_2$ and $TiO_2$ anti-reflective layers were coated on sapphire substrate by MOCVD. The standard wavelength was 4,600nm, and the thickness of anti-reflective layers were 379 and 758nm in case of ${\lambda}/4$ and ${\lambda}/2$ of incident angle($65^{\circ}$), respectively. The $SiO_2$ and $TiO_2$ anti-reflective layers were coated 12.6 and 9.7nm/min of deposition rates by increasing oxygen pressure to set the ideal refractive index of 1.283. In case of $SiO_2({\lambda}/2)$ coating, the transmittance increased from 55.0 to 62.7%. The transmittance of $TiO_2({\lambda}/2)$ anti-reflective layer also increased from 55.0 to 64.8%. The flexural strength of $SiO_2({\lambda}/2)$ and $TiO_2({\lambda}/2)$ layer coated sapphire increased from 337.8 to 362.9 and 371.8MPa, respectively. The flexural strength at $500^{\circ}C$ of these materials also increased respectively to 304.5, 358.2MPa from 265.9MPa. From these results, we confirmed these materials can be used as transmission window of infrared light.

Anti-Reflective coating for External Efficiency of Organic Light Emitting Diode

  • Kim, Byoung-Yong;Han, Jin-Woo;Kim, Jong-Yeon;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Oae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.449-449
    • /
    • 2007
  • OLED has many advantages of low voltage operation, self radiation, light weight, thin thickness, wide view angle and fast response time to overcome existing liquid crystal display (LCD)'s weakness. Therefore, It draws attention as promising display and has already developed for manufactured goods. Also, OLED is regarded as a only substitute of flexible display with a thin display. A considerable portion of the light originating film emissive centers buried in a solid film never escapes due to internal reflection at the air-film interface and is scattered as edge emission or dissipated within the solid film This is one of the major reasons why the luminous power efficiency of OLED remains low, in spite of research progress in OLED. Although several ways of overcoming this difficulty have been reported, no comprehensive method has been proposed yet. In this paper, we propose that use of anti-reflective coating layers.

  • PDF

Preparation and characterization of TiO2 anti-reflective layer for textured Si (100)

  • Choe, Jin-U;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.322-322
    • /
    • 2010
  • Recently, anti-reflective films (AR) are one of the most studied parts of a solar cell since these films improve the efficiency of photovoltaic devices. Also, anti-reflection films on the textured silicon solar cells reduce the amount of reflection of the incident light, which improves the device performance due to light trapping of incident light into the cell. Therefore, we preformed two step processes to get textured Si (100) substrate in this experiment. Pyramid size of textured silicon had approximately $2{\sim}9\;{\mu}m$. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at $600^{\circ}C$ using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and $1000^{\circ}C$, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about $75{\pm}5\;nm$. The reflectance at specific wavelength can be reduced to 3% in optimum layer.

  • PDF

High Durable Anti-Reflective Polymer with Silica Nanoparticle Array Fabricated by RF Magnetron Sputter (RF sputter를 이용한 실리카 증착 고 내구성 반사 방지막 제조)

  • Jeon, Seong-Gwon;Jeong, Eun-Uk;Rha, Jong-Joo;Kwon, Jung-Dae
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.84-89
    • /
    • 2019
  • We fabricated durable anti-reflective(AR) layer with silica globular coating on polymer by two steps. Firstly, nano-protrusions of polymer were formed by plasma etching known as R.I.E(reactive ion etching) process. Secondly, silica globular coating was deposited on polymer nano-protrusions for mechanically protective and optically enhancing AR layers by RF magnetron sputter. And then durable antireflective polymers were synthesized adjusting plasma power and time, working pressures of RIE and RF sputtering processes. Consequently, we acquired the average transmission (94.10%) in the visible spectral range 400-800 nm and the durability of AR layer was verified to sustain its transmission until 5,000 numbers by rubber test at a load of 500 gf.

Influence of Deposition Method on Refractive Index of SiO2 and TiO2 Thin Films for Anti-reflective Multilayers

  • Song, Myung-Keun;Yang, Woo-Seok;Kwon, Soon-Woo;Song, Yo-Seung;Cho, Nam-Ihn;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.524-530
    • /
    • 2008
  • Anti-Reflective (AR) thin film coatings of $SiO_2$ (n= 1.48) and $TiO_2$ (n=2.17) were deposited by ion-beam assisted deposition (IBAD) with End-Hall ion source and conventional electron beam (e-beam) evaporation to investigate the effect of deposition method on the refractive indicies (n) of the fIlms. Green-light generation using a GaAs laser diode was achieved via excitation of the second harmonic. The latter resulted from the transmission of the fundamental guided-mode wave of 1064 nm through periodically poled $LiNbO_3$. Large differences in the refractive indicies of each of the layers in the multilayer coating may improve AR performance. IBAD of $SiO_2$ reduced its refractive index from 1.45 to 1.34 at 1064 nm. Conversely, e-beam evaporation of $TiO_2$ increased its refractive index from 1.80 to 2.11. In addition, no fluctuations in absorption at the wavelength of 1064 nm were found. The results suggest that films prepared by different deposition methods can increase the effectiveness of multilayer AR coatings.

Transparent Hydrophobic Anti-Reflection Coating with SiO2\TiO2 Thin Layers (SiO2\TiO2 박막에 의한 투명 발수 반사방지 코팅)

  • Noh, Yeoung-Ah;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Functional coatings, such as anti-reflection and self-cleaning, are frequently applied to cover glass for photovoltaic applications. Anti-reflection coatings made of mesoporous silica film have been shown to enhance the light transmittance. $TiO_2$ photocatalyst films are often applied as a self-cleaning coating. In this study, transparent hydrophobic anti-reflective and self-cleaning coatings made of $SiO_2/TiO_2$ thin layers were fabricated on a slide glass substrate by the sol-gel and dip-coating processes. The morphology of the functional coatings was characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optical properties of the functional coatings were investigated using an UV-visible spectrophotometer. Contact angle measurements were performed to confirm the hydrophobicity of the surface. The results showed that the $TiO_2$ films exhibit a high transmittance comparable to that of the bare slide glass substrate. The $TiO_2$ nanoparticles make the film more reflective and lead to a lower transmittance. However, the transmittance of the $SiO_2/TiO_2$ thin layers is 93.5% at 550 nm with a contact angle of $110^{\circ}$, which is higher than that of the bare slide glass (2.0%).

Silicon Containing Bottom Anti-Reflective Coating for ArF Photolithography (ArF 포토리소그라피공정을 위한 실리콘이 함유된 반사방지막코팅)

  • Lee, Jun-Ho;Kim, Hyung-Gi;Kim, Myung-Woong;Lim, Young-Toek;Park, Joo-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.66-66
    • /
    • 2006
  • Development of ArF Photo-lithography process has proceeded with the increase of numerical aperature (NA) and the decrease of resist thickness. It makes many problems such as cost and process complexity. A novel spin-on hard mask system is proposed to overcome many problems Spin-on hard mask composed of two layers of siloxane and carbon. The optical thickness of two layers is designed from reflectivity measurement at specified n, k respectively. The property of photo-resist shows different results according to Si contents. Si-contents was measured XPS(X-ray Photoelectron spectroscopy).

  • PDF

Electronic Spin Filter via Spin Superlattice

  • Han, Jae-Ho;Lee, H.W.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.77-80
    • /
    • 2007
  • Recently there was a proposal for a spin filter by using the spin superlattice structure. In a certain energy range, the proposed structure exhibits a high spin filtering efficiency close to 100%. Unfortunately such energy range turns out to be narrow. In this paper, we report a method to widen the energy range by using an analogy to optical anti-reflection coating. In optics, it is well known that a stack of alternating layers of two dielectric materials can function as a highly transmissive or reflective filter for wide range of wavelength. Since electrons also have wave character as light, it would be possible to make an electronic analog of an optical filter. We demonstrate that alternating layers of two materials with different g-factors can function as a spin filter that allows electrons to be transmitted only when their spins point towards a certain particular direction. This spin-superlattice-based spin filter operates in wide energy ranges, curing the problem in the previous proposal.

Investigation of the Corrosive Chemical Interaction on Antireflective Layers of Solar Cell Multilayers

  • Choe, Seong-Hyeon;Kim, Seon-Mi;Jin, Suk-Yeong;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.187-187
    • /
    • 2011
  • Nowadays, the issue of solar cell durability in local weather and environment is a crucial issue. Above all, surface corrosion on solar cell multilayers is a major factor that determines the durability of commercial solar cells; corrosive chemical interactions between air, humidity and chemical species and solar cell multilayers can unfavorably affect the durability. Here, we study microscopic and spectroscopic surface techniques to investigate the corrosive interaction on the antireflective layers of solar cell multilayers under various conditions such as acid, base, constant temperature and humidity. Surface morphology and adhesion force were characterized with atomic force microscopy before and after chemical treatment. Chemical composition, and transmittance factors were studied with X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy, respectively. Based on these studies, we suggest the dominant factors in the corrosive chemical processes, and their influences on the structural, compositional, and optical properties of the antireflective layers.

  • PDF