• Title/Summary/Keyword: anti-oxidative

Search Result 1,623, Processing Time 0.027 seconds

Physicochemical Properties and Physiological Activities of Rhus verniciflua Stem Bark Cultured with Fomitella fraxinea (장수버섯 균사체가 배양된 옻피의 이화학적 특성 및 생리활성)

  • Choi, Han-Seok;Kim, Bo-Hyun;Yeo, Soo-Hwan;Jeong, Seok-Tae;Choi, Ji-Ho;Park, Hyo-Suk;Kim, Myung-Kon
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • The contents of proximate composition, free amino acids and phenolic acids in the Fomitella fraxinea cultivated-Rhus verniciflua stem bark(FRVSB), and its adipogenesis effect were investigated. The proximate composition(%) of FRVSB was as follows: moisture(7.64), ash(6.30), crude fat(3.86), crude protein(3.59) and sugar(not detected); while Rhus verniciflua stem bark(RVSB) contained 1.64, 8.09, 7.28, 6.48 and 5.39, respectively. The total free amino acids concentration was 97.41 mg% in FRVSB and 71.91 mg% in RVSB. Phosphoserine(55.06 mg%), ammonia(17.84mg%) and aspartic acid(6.05mg%) were predominant amino acids. The content of total phenolic acids was 422.89 ppm in ethanol extract and 283.86 ppm in water extract, with syringic and gallic acid as the main component. The FRVSB extracts showed a potent free radical scavenging activity for DPPH(2,2-diphenyl-1-picrylhydrazyl hydrate) with $IC_{50}$ of $28.54\;{\mu}g$(EtOH) and $54.70\;{\mu}g$(water), respectively, whereas $IC_{50}$ value of gallic acid was $1.84\;{\mu}g$. The protective effect of both ethanol and water extract the extracts against UV-induced oxidative stress in NIH3T3 was observed. The water extracts of FRVSB may promote adipogenesis in 3T3-L1 cells.

Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting (황기의 볶음 조건에 따른 성분 및 자외선 광보호 활성 변화)

  • Park, Jeong-Yong;Lee, Ji Yeon;Kim, Hyung Don;Jang, Gwi Yeong;Seo, Kyung Hye
    • Journal of Nutrition and Health
    • /
    • v.52 no.5
    • /
    • pp.413-421
    • /
    • 2019
  • Purpose: Astragalus membranaceus (AM) is an important traditional medicinal herb. Pharmacological research has indicated that AM has various physiological activities such as antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, and hepatoprotective activities. The bioactive substances responsible for the physiological activities in AM, including many antioxidant substances, change during the roasting process. This study investigated and compared the changes in the antioxidant constituents of AM caused by roasting. Methods: DPPH (1,1-diphenyl-2-picryl hydrazyl) and $ABTS^+$ (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activities and their total phenolic content (TPC) were measured. High-performance liquid chromatography (HPLC) analysis was performed to confirm any changes in the isoflavonoids of roasted AM (R-AM),. The cell viability of UVB-induced HDF (Human dermal fibroblast) cells treated with AM and R-AM extracts was investigated. The comet assay was used to examine the inhibitory effects of R-AM extracts on DNA damage caused by oxidative stress. Results: The DPPH and $ABTS^+$ radical scavenging activities were $564.6{\pm}20.9$ and $108.2{\pm}3.1$ ($IC_{50}$ value) respectively, from the 2R-AM. The total phenol content was $47.80{\pm}1.40mg$ GAE/g from the 1R-AM. The values of calycosin and formononetin, which are the known isoflavonoid constituents of AM, were $778.58{\pm}2.72$ and $726.80{\pm}3.45{\mu}g/g$ respectively, from the 2R-AM. Treatment of the HDF cells with R-AM ($50{\sim}200{\mu}g/mL$) did not affect the cell viability. Furthermore, the R-AM extracts effectively protected against UVB-induced DNA damage. Conclusion: The findings of this study indicate that R-AM increases its isoflavonoid constituents and protects against UVB-induced DNA damage in HDF cells.

Cognitive Improvement Effects of Krill Oil in a Scopolamine-induced Mice Model (Scopolamine 유도 인지 저하 마우스 모델에서 크릴 오일의 인지 개선 효과)

  • Hye-Min Seol;Jeong-Ah Lee;Mi-Sun Hwang;Sang-Hoon Park;Hyeong-Soo Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.509-519
    • /
    • 2024
  • A previous study showed that krill oil improved recognition and memory through anti-oxidative effects in an amyloid β model, but the authors noted that further investigations are necessary of alterations to neurotransmitters' states and of serum lipid profile improvements related to serum lipid peroxidation. Accordingly, in this study, ICR mice were pre-treated intraperitoneally with scopolamine prior to induced neurotransmission impairment, and the effects of krill oil provision on their capabilities of cognition were tested by performing a passive avoidance test (PAT), water maze test (WMT), and novel object recognition test. Then, parameters including the acetylcholine (ACh) concentration, acetylcholinesterase activity (AChE), lipid peroxidation, serum lipid levels, and nerve cell proliferation were investigated. The results showed that krill oil improved the mice's abilities in recognition and memory as the times taken to complete the PAT and WMT were reduced compared to the mice in a comparison scopolamine-treated group. Krill oil produced an increased concentration of Ach, and this was accompanied by a decrease in AChE. As shown in a scopolamine-treated SH-SY5Y cell line, krill oil reduced the activity of AChE. Moreover, the suppression of lipid peroxidation-reflected in the finding that malondialdehyde was decreased with krill oil provision-is speculated to affect the recorded serum triglyceride and cholesterol decreases and LDL cholesterol increase. The intake of krill oil was also found to produce an improvement in brain-derived neurotrophic factor expression by stimulating the activation of cyclic AMP response element binding protein in the brain tissue. Overall, the current results imply that the provision of krill oil raises the cognition and memory by elevating neurotransmitters and by improving the serum lipid profile and nerve cell proliferation, which occur as lipid peroxidation is suppressed in the brain tissue.