• Title/Summary/Keyword: anti-neuroinflammation

Search Result 72, Processing Time 0.023 seconds

Effect of a Sargassum serratifolium Extract on Neuroinflammation Induced by Lipopolysaccharides in Mice (LPS로 유도한 마우스의 급성신경염증에 대한 톱니모자반(Sargassum serratifolium) 추출물의 효과)

  • Choi, Min-Woo;Kim, Hyeung-Rak;Lee, Hyoung-Gon;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • The common hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD), is the presence of chronic neuroinflammation, which contributes to the loss of neuronal structure and function. This study investigated the effects of an ethanolic extract of Sargassum serratifolium (SSE) in a lipopolysaccharides (LPS)-induced murine neuroinflammation model. Mice were administered SSE (100 mg/kg body weight) or vehicle for 5 days by oral gavage, and then treated with LPS or saline by intraperitoneal injection. Thereafter, the brain tissues were collected, and the expression of pro-inflammatory cytokines was analyzed by quantitative real-time RT-PCR. There was a marked increase in the spleen weight index in the LPS-treated groups, which indicated the induction of acute systemic inflammation. Based on significant increases in the levels of IL-1 and IL-6 expression, the induction of neuroinflammation was also evident in the cortex and hippocampus of the LPS-treated groups. The overall expression of IL-1 and IL-6 was decreased slightly by SSE administration, compared with the LPS group, and a marked change in IL-1 was observed in the cortex of the SSE-treated (SSE/LPS) group. These results suggest that SSE has potential as an anti-neuroinflammatory nutraceutical.

Effects of Baicalein on Neuroinflammation in Lipopolysaccharide-treated Mice (Baicalein이 Lipopolysaccharide에 의한 생쥐의 Neuroinflammation에 미치는 영향)

  • Ha, Gyung-Woon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • Objects : Baicalein is a major bioactive flavonoid component of Scutellaria baicalensis Georgi that shows a wide range of biological activities, including neuroprotections and anti-inflammatory actions. Hence it is a potential therapeutic material for the treatment of neuroinflammation. In this study, we investigated the modulatory effect of baicalein on neuroinflammation. Method : Pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 mRNA), COX-2 mRNA expression and microglial activation in the brain tissue is induced by systemic lipopolysaccharide (LPS) treatment in C57BL/6 mice. Baicalein was treated orally with 10, 20, and 30 mg/kg 1 hour prior to the LPS (3 mg/kg, i.p.) injection. TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and COX-2 mRNA expression in the brain tissue was measured by the quantitative real-time polymerase chain reaction(PCR) method. Iba1 expression in the brain was measured by western blotting method. Microglia was observed with immunohistochemistry. Results : Baicalein 30 mg/kg significantly attenuated the expression of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and COX-2 mRNA in the brain tissue. Baicalein 20 mg/kg significantly attenuated the expression of IL-6 mRNA in the brain tissue. Baicalein 30 mg/kg significantly attenuated the expression of Iba1 protein expression in the brain tissue. Baicalein 30 mg/kg significantly decreased the number and cell size of microglia in the cerebral cortex and hypothalamic region and the area percentage of Iba1-expressed microglia in the hippocampus. Conclusion : These results demonstrated that baicalein attenuates LPS induced neuroinflammation in the mice via reduction of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6), COX-2 mRNA expression and microglial activation.

Myricetin prevents sleep deprivation-induced cognitive impairment and neuroinflammation in rat brain via regulation of brain-derived neurotropic factor

  • Sur, Bongjun;Lee, Bombi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.415-425
    • /
    • 2022
  • Memory formation in the hippocampus is formed and maintained by circadian clock genes during sleep. Sleep deprivation (SD) can lead to memory impairment and neuroinflammation, and there remains no effective pharmacological treatment for these effects. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. In this study, we investigated the effects of MYR on memory impairment, neuroinflammation, and neurotrophic factors in sleep-deprived rats. We analyzed SD-induced cognitive and spatial memory, as well as pro-inflammatory cytokine levels during SD. SD model rats were intraperitoneally injected with 10 and 20 mg/kg/day MYR for 14 days. MYR administration significantly ameliorated SD-induced cognitive and spatial memory deficits; it also attenuated the SD-induced inflammatory response associated with nuclear factor kappa B activation in the hippocampus. In addition, MYR enhanced the mRNA expression of brain-derived neurotropic factor (BDNF) in the hippocampus. Our results showed that MYR improved memory impairment by means of anti-inflammatory activity and appropriate regulation of BDNF expression. Our findings suggest that MYR is a potential functional ingredient that protects cognitive function from SD.

Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats

  • Lee, Bombi;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.27-37
    • /
    • 2020
  • Neuroinflammation is an important process underlying a wide variety of neurodegenerative diseases. Carvacrol (CAR) is a phenolic monoterpene commonly used as a food additive due to its antibacterial properties, but it has also been shown to exhibit strong antioxidative, anti-inflammatory, and neuroprotective effects. Here, we sought to investigate the effects of CAR on inflammation in the hippocampus and prefrontal cortex, as well as the molecular mechanisms underlying these effects. In our study, lipopolysaccharide was injected into the lateral ventricle of rats to induce memory impairment and neuroinflammation. Daily administration of CAR (25, 50, and 100 mg/kg) for 21 days improved recognition, discrimination, and memory impairments relative to untreated controls. CAR administration significantly attenuated expression of several inflammatory factors in the brain, including interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2. In addition, CAR significantly increased expression of brain-derived neurotrophic factor (BDNF) mRNA, and decreased expression of Toll-like receptor 4 (TLR4) mRNA. Taken together, these results show that CAR can improve memory impairment caused by neuroinflammation. This cognitive enhancement is due to the anti-inflammatory effects of CAR medicated by its regulation of BDNF and TLR4. Thus, CAR has significant potential as an inhibitor of memory degeneration in neurodegenerative diseases.

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.702-710
    • /
    • 2019
  • Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.

Natural Products as Potential Therapeutic Strategies for Parkinson's Disease

  • Hae-Rim Cha;Mi-Ran Lee;Hyun-Jeong Cho
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.121-129
    • /
    • 2023
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions of people worldwide. The conventional treatment model for PD have harmful side effects, such as dyskinesia, hallucinations, nausea, and fatigue, and are expensive. As a result, natural products derived from medicinal herbs, fruits, and vegetables have emerged as potential therapeutic strategies for PD. These natural products have been traditionally used to treat various diseases and have been shown to possess anti-oxidative and anti-inflammatory properties, as well as inhibitory roles in protein misfolding, mitochondrial homeostasis, neuroinflammation and other neuroprotective processes. In addition, they have fewer side effects and are generally less expensive than conventional drugs. It also discusses the limitations of current treatments and the potential of natural remedies derived from plants to treat PD in new ways or as supplements to existing treatments. The multifunctional mechanisms of medicinal plants that may be utilized to treat PD are also discussed, including the modulation of neurotransmitter systems, the enhancement of neurotrophic factors, and the inhibition of apoptosis. While more research is needed to fully understand their mechanisms of action and efficacy, natural products have the potential to provide safer and more effective treatment options for patients with PD.

Rubus fruticosus leaf extract inhibits vascular dementia-induced memory impairment and neuronal loss by attenuating neuroinflammation

  • Nak Song Sung;Sun Ho Uhm;Hyun Bae Kang;Nam Seob Lee;Young-Gil Jeong;Do Kyung Kim;Nak-Yun Sung;Dong-Sub Kim;Young Choon Yoo;Seung Yun Han
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.494-507
    • /
    • 2023
  • Vascular dementia (VaD) is characterized by progressive memory impairment, which is associated with microglia-mediated neuroinflammation. Polyphenol-rich natural plants, which possess anti-inflammatory activities, have attracted scientific interest worldwide. This study investigated whether Rubus fruticosus leaf extract (RFLE) can attenuate VaD. Sprague-Dawley rats were separated into five groups: SO, sham-operated and treated with vehicle; OP, operated and treated with vehicle; RFLE-L, operated and treated with low dose (30 mg/kg) of RFLE; RFLE-M, operated and treated with medium dose (60 mg/kg) of RFLE; and RFLE-H, operated and treated with high dose (90 mg/kg) of RFLE. Bilateral common carotid artery and hypotension were used as a modeling procedure, and the RFLE were intraorally administered for 5 days (preoperative 2 and postoperative 3 days). The rats then underwent memory tests including the novel object recognition, Y-maze, Barnes maze, and passive avoidance tests, and neuronal viability and neuroinflammation were quantified in their hippocampi. The results showed that the OP group exhibited VaD-associated memory deficits, neuronal death, and microglial activation in hippocampi, while the RFLE-treated groups showed significant attenuation in all above parameters. Next, using BV-2 microglial cells challenged with lipopolysaccharide (LPS), we evaluated the effects of RFLE in dynamics of proinflammatory mediators and the upstream signaling pathway. RFLE pretreatment significantly inhibited the LPS-induced release of nitric oxide, TNF-α, and IL-6 and upregulation of the MAPKs/NF-κB/iNOS pathway. Collectively, we suggest that RFLE can attenuate the histologic alterations and memory deficits accompanied by VaD, and these roles are, partly due to the attenuation of microglial activation.

Neuroprotective and Anti-Neuroinflammatory Activities of Anthraquinones Isolated from Photorhabdus temperata Culture Broth

  • Yang, Eun-Ju;Kim, Seo-Hyun;Lee, Kyeong-Yeoll;Song, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.12-21
    • /
    • 2018
  • Photorhabdus temperata (PT), a gram-negative bacterium, lives symbiotically within entomopathogenic nematodes. The insecticidal compounds derived from Photorhabdus are used as biopesticides in agriculture. However, the physiological properties are not well characterized. In the course of our screening for neuroprotective and anti-neuroinflammatory substances from natural products, the culture broth of PT showed considerable activities. By activity-guided purification, five anthraquinones, namely, 3-methoxychrysazine (1), 1,3-dimethoxy-8-hydroxy-9,10-anthraquinone (2), 1,3,8-trihydroxy-9,10-anthraquinone (3), 3,8-dihydroxy-1-methoxy-9,10-anthraquinone (4), and 1,3,4-trimethoxy-8-hydroxy-9,10-anthraquinone (5), were isolated from the ethyl acetate fraction of the PT culture broth. Among the isolated compounds, $75{\mu}M$ 3 significantly protected mouse hippocampal neuronal cells (HT22) against 5 mM glutamate-induced cell death via the inhibition of reactive oxygen species production, $Ca^{2+}$ influx, and lipid peroxidation. Additionally, 3 and 4 effectively suppressed the interferon-${\gamma}$-induced neuroinflammation of mouse-derived microglial cells (BV2) at 10 ng/ml, via the reduction of nitric oxide, interleukin-6, and tumor necrosis factor-${\alpha}$. Anthraquinones 3 and 4 derived from the PT culture broth are a potential starting point to discover neuroprotective and anti-neuroinflammatory drug leads. The novel compound 5 is reported for the first time in this study.

miR-30a-5p Augments the Anti-inflammatory Effects of Dexmedetomidine in LPS-induced BV2 Cells (LPS로 유도된 BV2 세포에서 Dexmetomidine이 갖는 항염증효과에 대한 miR-30a-5p의 시너지 효과)

  • Kim, Ji-Eun;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.201-208
    • /
    • 2022
  • Neuroinflammation is defined as a neurological inflammation within the brain and the spinal cord. In neuroinflammation, microglia are the tissue-resident macrophages of the central nervous system, which act as the first line of defense against harmful pathogens. Dexmedetomidine (Dex) has an anti-inflammatory effect in many neurological conditions. Additionally, the microRNA-30a-5p (miR-30a-5p) mimic has been proven to be effective in macrophages in inflammatory conditions. This study aimed to investigate the synergistic anti-inflammatory effects of both miR-30a-5p and Dex in lipopolysaccharide (LPS)-induced BV2 cells. This study showed that miR-30a-5p and Dex decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation in LPS-induced BV2 cells. MiR-30a-5p and Dex alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), LPS-induced phosphorylation c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (ERK) and p38. Also, the expression of the NOD-like receptor pyrin domain containing 3 inflammasome (NLRP3), cleaved caspase-1, and ASC was inhibited. Furthermore, LPS-stimulated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression were attenuated by Dex and miR-30a-5p. Our results indicate that a combination of Dex and miR-30a-5p, attenuates NF-κB activation, the mitogen-activated protein kinase (MAPK) signaling pathway, and inflammatory mediators involved in LPS-induced inflammation and inhibits the activation of the NLRP3 inflammasome in LPS-activated BV2 cells.

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong;Zhang, Xiao-Ya;Sun, Jing;Cong, Qi-Jie;Chen, Wei-Xiong;Ahsan, Hafiz Muhammad;Gao, Jing;Qian, Jin-Jun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.442-449
    • /
    • 2019
  • This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.