• 제목/요약/키워드: anti-inflammatory$NF-{\kappa}B$

검색결과 748건 처리시간 0.034초

Xanthone attenuates mast cell-mediated allergic inflammation

  • AYE, AYE;Jeon, Yong-Deok;Song, Young-Jae;Jin, Jong-Sik
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.123-123
    • /
    • 2019
  • Xanthone is a kind of polyphenolic compounds that contain a distinctive chemical structure with a tricyclic aromatic ring found in a few higher plant families e.g. gentian root. This compound had a variety of biological activity, for instance antioxidant, antibacterial, anti-inflammatory, and anticancer effects. However, the effect of xanthone on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, the aim of this study was to elucidate the anti-allergic inflammatory effects and the underlying molecular mechanism of xanthone in PMACI-stimulated human mast cells-1 (HMC-1). In this result, xanthone treatment decreased the production of histamine, pro-inflammatory cytokines such as tumor necrosis factor-a (TNF-${\alpha}$), IL-6, and IL-8 and expressions of TSLP in PMACI-stimulated HMC-cells. In addition, xanthone significantly suppressed the phosphorylation of MAPKs and the activation of NF-${\kappa}B$ signal pathway in activated mast cells. Furthermore, xanthone inhibited the activation of caspase-1, an IL-$1{\beta}$ converting enzyme, in PMACI-stimulated HMC-1 cells. These findings provide evidence that xanthone could be a potential therapeutic agent for allergy-related inflammatory disorders.

  • PDF

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

  • Lee, Ji Ae;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • 제42권10호
    • /
    • pp.702-710
    • /
    • 2019
  • Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson's disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits $NF{\kappa}B$ activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta ($IL-1{\beta}$) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of $IL-1{\beta}$. In the activated microglia, KMS99220 reduced the phosphorylation of $I{\kappa}B$ kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.

LPS로 유도된 대식세포에서 수치 치자의 항염효과 (Anti-inflammatory Effect of the Processed Gardeniae Fructus in LPS-induced Macrophages)

  • 안이슬;김상찬;변성희;이종록;박숙자
    • 대한한의학방제학회지
    • /
    • 제27권4호
    • /
    • pp.245-255
    • /
    • 2019
  • Objective : Herbal processing is one of the traditional techniques used in Korean medicine to increase the effectiveness of herbs or reduce their toxicity. In this study, Gardeniae Fructus processed with ginger juice and alcohol was prepared to evaluate the anti-inflammatory effect on lipopolysaccharide (LPS)-induced macrophages. Methods : The processing of Gardeniae Fructus was performed by adding 40 % ginger juice or 10% alcohol to the total weight of Gardeniae Fructus and then roasting at 150℃ for 5 minutes. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To detect nitric oxide (NO) production, culture media were mixed with Griess reagent and measured the absorbance at 540 nm. Prostaglandin E2 (PGE2) and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was applied to monitor protein expression levels. Results : LPS-induced NO, PGE2 and inflammatory cytokines were decreased by the treatment of normal or processed Gardeniae Fructus ethanol extracts (GFE). Compared to normal GFE, the processed GFE showed a stronger inhibitory effect on the production of NO and PGE2. These inhibitory effect of GFE was due to the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mediated from the inhibition of nuclear factor kappa B (NF-κB). Furthermore, processed GFE showed more suppressive effects on the expression of iNOS, COX-2 and IκBα proteins than normal GFE. Conclusion : From these results, it was concluded that GFE had an improved anti-inflammatory effect compared to normal GFE. These results provide an objective evidences for the use of herbal processing in Korean medicine.

승습탕(勝濕湯)이 MIA로 유발된 골관절염 흰쥐에 미치는 영향 (Effects of Seungseup-tang on MIA-induced Osteoarthritis Rats)

  • 이종훈;우창훈;김영준;안희덕
    • 한방재활의학과학회지
    • /
    • 제26권3호
    • /
    • pp.1-15
    • /
    • 2016
  • Objectives This study was designed to evaluate the anti-inflammatory effects of Seungseup-tang (SST) on the monosodium iodoacetate (MIA)-induced osteoarthritis rats. Methods Osteoarthritis was induced by injection of MIA ($50{\mu}l$ with 80 mg/ml) into knee joint cavity of rats. Rats were divided into 4 groups (normal group, control group, indomethacin treated group, SST treated group, each n=6). Normal group was not injected with MIA and taken normal diet. Control group was injected with MIA and taken with distilled water. Indomethacin treated group was injected with MIA and taken indomethacin 5 mg/kg by oral administration. SST treated group was injected with MIA and taken SST 200 mg/kg by oral administration. We examined the weight-bearing ability of hind paw, biomarkers related to oxidative stress in serum, inflammatory proteins and inflammatory mediators and cytokines. Moreover, histopathological examination of knee joint structure was also performed by Hematoxylin & Eosin (H&E), Safranin-O staining method. Results In the present study, SST treated group showed a similar inhibitory effects alike indomethacin treated group, in most of the studied parameters of inflammation. The increased oxidative stress biomarker such as reactive oxygen species (ROS) and peroxy nitrite ($ONOO^-$) in the serum were reduced with SST. Especially, the level of $ONOO^-$ compared with control group significantly suppressed. Also, the expression of inflammatory mediators and cytokines induced by nuclear factor-kappa B (NF-${\kappa}B$) activation was modulated through inhibition of IkBa phosphorlation. In addition, histological analysis revealed that cartilage damage by MIA repaired markedly in SST treated group. Conclusions According to the results, Seungseup-tang may be effective for preventing the progression of osteoarthritis.

Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, In Vivo and In Vitro

  • Kang, Na-Jin;Han, Sang-Chul;Kang, Hyun-Jae;Ko, Geum;Yoon, Weon-Jong;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • 제33권4호
    • /
    • pp.325-332
    • /
    • 2017
  • 3-Bromo-4,5-dihydroxybenzaldehyde (BDB) is a natural bromophenol compound that is most commonly isolated from red algae. The present study was designed to investigate the anti-inflammatory properties of BDB on atopic dermatitis (AD) in mice induced by 2,4-dinitrochlorobenzene (DNCB) and on lipopolysaccharide (LPS)-stimulated murine macrophages. BDB treatment (100 mg/kg) resulted in suppression of the development of AD symptoms compared with the control treatment (induction-only), as demonstrated by reduced immunoglobulin E levels in serum, smaller lymph nodes with reduced thickness and length, a decrease in ear edema, and reduced levels of inflammatory cell infiltration in the ears. In RAW 264.7 murine macrophages, BDB (12.5, 25, 50, and $100{\mu}M$) suppressed the production of interleukin-6, a proinflammatory cytokine, in a dose-dependent manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and signal transducer and activator of transcription 1 (STAT1; Tyr 701), two major signaling molecules involved in cellular inflammation. Taken together, the results show that BDB treatment alleviates inflammatory responses in an atopic dermatitis mouse model and RAW 264.7 macrophages. These results suggest that BDB may be a useful therapeutic strategy for treating conditions involving allergic inflammation such as atopic dermatitis.

A novel herbal formulation consisting of red ginseng extract and Epimedium koreanum Nakai-attenuated dextran sulfate sodium-induced colitis in mice

  • Saba, Evelyn;Lee, Yuan Yee;Kim, Minki;Hyun, Sun-Hee;Park, Chae-Kyu;Son, Eunjung;Kim, Dong-Seon;Kim, Sung-Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.833-842
    • /
    • 2020
  • Background: Ulcerative colitis (UC) is a commonly encountered large intestine disease in the contemporary world that terminates into colorectal cancer; therefore, the timely treatment of UC is of major concern. Panax ginseng Meyer is an extensively consumed herbal commodity in South East Asian countries, especially Korea. It exhibits a wide range of biologically beneficial qualities for almost head-to-toe ailments in the body. Epimedium koreanum Nakai (EKN) is also a widely used traditional Korean herbal medicine used for treating infertility, rheumatism, and cardiovascular diseases. Materials and methods: Separately the anti-inflammatory activities of both red ginseng extracts (RGEs) and EKNs had been demonstrated in the past in various inflammatory models; however, we sought to unravel the anti-inflammatory activities of the combination of these two extracts in dextran sulfate sodium (DSS)-induced ulcerative colitis in mice model because the allopathic remedies for UC involve more side effects than benefits. Results: Our results have shown that the combination of RGE + EKN synergistically alleviated the macroscopic lesions in DSS-induced colitic mice such as colon shortening, hematochezia, and weight loss. Moreover, it restored the histopathological lesions in mice and decreased the levels of proinflammatory mediators and cytokines through the repression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP-3) expression. In vitro, this combination also reduced the magnitude of nitric acid (NO), proinflammatory mediators and cytokine through NF-κB and mitogen-activated protein kinase (MAPK) pathways in RAW 264.7 mouse macrophage cells. Conclusion: In the light of these findings, we can endorse this combination extract as a functional food for the prophylactic as well as therapeutic treatment of UC in humans together with allopathic remedies.

Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α

  • Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • 제49권5호
    • /
    • pp.270-286
    • /
    • 2019
  • Purpose: Despite the well-known anti-inflammatory effects of vitamin D in periodontal health, its mechanism has not been fully elucidated. In the present study, the effect of vitamin D on strengthening E-cadherin junctions (ECJs) was explored in human gingival keratinocytes (HGKs). ECJs are the major type of intercellular junction within the junctional epithelium, where loose intercellular junctions develop and microbial invasion primarily occurs. Methods: HOK-16B cells, an immortalized normal human gingival cell line, were used for the study. To mimic the inflammatory environment, cells were treated with tumor necrosis factor-alpha ($TNF-{\alpha}$). Matrix metalloproteinases (MMPs) in the culture medium were assessed by an MMP antibody microarray and gelatin zymography. The expression of various molecules was investigated using western blotting. The extent of ECJ development was evaluated by comparing the average relative extent of the ECJs around the periphery of each cell after immunocytochemical E-cadherin staining. Vitamin D receptor (VDR) expression was examined via immunohistochemical analysis. Results: $TNF-{\alpha}$ downregulated the development of the ECJs of the HGKs. Dissociation of the ECJs by $TNF-{\alpha}$ was accompanied by the upregulation of MMP-9 production and suppressed by a specific MMP-9 inhibitor, Bay 11-7082. Exogenous MMP-9 decreased the development of ECJs. Vitamin D reduced the production of MMP-9 and attenuated the breakdown of ECJs in the HGKs treated with $TNF-{\alpha}$. In addition, vitamin D downregulated $TNF-{\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) signaling in the HGKs. VDR was expressed in the gingival epithelium, including the junctional epithelium. Conclusions: These results suggest that vitamin D may avert $TNF-{\alpha}$-induced downregulation of the development of ECJs in HGKs by decreasing the production of MMP-9, which was upregulated by $TNF-{\alpha}$. Vitamin D may reinforce ECJs by downregulating $NF-{\kappa}B$ signaling, which is upregulated by $TNF-{\alpha}$. Strengthening the epithelial barrier may be a way for vitamin D to protect the periodontium from bacterial invasion.

Bioassay-Guided Isolation and Identification of Compounds from Arecae Pericarpium with Anti-inflammatory, Anti-oxidative, and Melanogenesis Inhibition Activities

  • Indriana, Amelia;Lee, Kyoung Jin;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • 제22권3호
    • /
    • pp.193-200
    • /
    • 2016
  • This study describes the anti-inflammatory, anti-oxidant, and melanogenesis inhibition activities of methanol extract and various organic solvent fractions of Arecae Pericarpium. We examined the inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells, 1,1-diphenyl-2-picrylhydrazine (DPPH) scavenging activity, mushroom tyrosinase inhibition activity and melanin contents. The study showed that, among all tested fractions, methylene chloride fraction showed the strongest inhibition of LPS-induced NO production in RAW 264.7 cells ($IC_{50}$ value $8.89{\mu}g/mL$) and DPPH radical scavenging activity ($EC_{50}$ value $21.39{\mu}g/mL$). Methylene chloride and ethyl acetate fractions similarly inhibited mushroom tyrosinase activity. Methanol extract exhibited strongest reduction of melanin content in B16F10 melanoma cells. Based on the bioactivity assay results, methylene chloride and ethyl acetate fractions were further separated. Eight phenolic compounds were isolated, which are dimeric syringol (1), catechol (2), 4-hydroxybenzaldehyde (3), vanillin (4), 4-hydroxyacetophenone (5), apocynin (6), protocatechuic acid (7) and 4-hydroxybenzoic acid (8). Among the isolated compounds tested, catechol showed the strongest inhibition of LPS-induced NO production in RAW 264.7 cells. Catechol also showed the concentration-dependent NF-${\kappa}B$ inhibition activity. Arecae Pericarpium might have potentials to be developed as anti-inflammatory agent or dermatological product for skin-whitening agent.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng;Feng, Xueke;Ye, Nan;Wei, Panpan;Zhang, Zhanwei;Lu, Wenyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.261-272
    • /
    • 2021
  • Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.