• Title/Summary/Keyword: anti-inflammatory$NF-{\kappa}B$

Search Result 751, Processing Time 0.023 seconds

The Ameliorative Effect of Rubi Fructus on DSS-induced Colitis in Mice

  • Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.34 no.3
    • /
    • pp.216-222
    • /
    • 2021
  • Ulcerative colitis (UC) is an inflammatory bowel disease and a chronic gastrointestinal disorder. Rubi Fructus (RF), the fruit of Rubus coreanus Miquel, is known to exert several pharmacological effects including anti-oxidative, anti-obesity and anti-inflammatory properties. However, the improving effect and mechanism of RF on intestinal inflammation is not been fully understood. The purpose of this study was to investigate the regulatory effect of RF on dextran sulfate sodium (DSS)-induced colitis in mice. We evaluated the effects of RF on DSS-induced clinical signs by analyzing weight loss and colon length. The inhibitory effects of RF on inflammatory mediators such as prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, as well as the activation of nuclear factor-κB (NF-κB), were determined in colitis tissue. Our data indicated that mice treated with DSS showed clinical symptoms of colitis, including weight loss, colon length decrease and diarrhea. However, we observed that RF treatment significantly improved these clinical symptoms of weight loss, colon length decrease and diarrhea induced by DSS. RF inhibited the enhanced levels of COX-2 and PGE2 caused by DSS. We also showed that the anti-inflammatory mechanism of RF by suppressing the activation of NF-kB in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from RF for UC treatment.

Anti-inflammatory Effect of Perilla frutescens (L.) Britton var. frutescens Extract in LPS-stimulated RAW 264.7 Macrophages

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • This study was designed to investigate the inhibitory effects of Perilla frutescens (L.) Britton var. frutescens extract on the production of inflammation-related mediators (NO, ROS, NF-${\kappa}B$, iNOS and COX-2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Perilla frutescents (L.) Britton var. frutescens was air-dried and extracted with ethanol. The extract dose-dependently decreased the generation of intracellular reactive oxygen species and dose-dependently increased antioxidant enzyme activities, such as superoxide dismutase, catalase and glutathione peroxidase in lipopolysaccharide stimulated RAW 264.7 macrophages. Also, Perilla frutescens (L.) Britton var. frutescens extract suppressed NO production in lipopolysaccharide-stimulated RAW 264.7 cells. The expressions of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$ and IL-6), NF-${\kappa}B$, iNOS and COX-2 were inhibited by the treatment with the extract. Thus, this study shows the Perilla frutescens (L.) Britton var. frutescens extract could be useful for inhibition of the inflammatory process.

The Study of anti-inflammatory Mechanism with Cobra Venom on Astrocytes of Rats (뇌(腦) 성상세포(星狀細胞)를 대상으로 한 Cobrotoxin의 염증(炎症) 치료(治療) 기전(機轉) 연구(硏究))

  • Yoo, Jae-ryong;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.155-167
    • /
    • 2005
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effect of Cobrotoxin on binding affinity of cobrotoxin with P50, $IKK{\alpa}$ and $IKK{\beta}$, activities of NF-${\kappa}B$, Cell viability of astrocyte, expressions of protein molecules of NF-${\kappa}B$ such as P50, P-$1{kappa}B$, $1{\kappa}B$ and iflammation related genes such as Cox-2, iNOS, cPLA2 in the SNP or LPS induced Inflammatory pathway of Rats' astrocytes. Methods : In this study, The expression of cytosolic phospholipase A2, Nitric oxcide, Cyclooxygenase-2 and inducible nitrogen oxide synthase was determined by western blotting with corresponding antibodies, and the generation of NF-${\kappa}B$ was assayed by EMSA method in astrocytes of rats. The Cell viability of astrocytes was determined by MTT assay, and Binding affinity of Cobrotoxin with P50, $IKK{\alpha}$ and $IKK{\beta}$ was assayed by Surface plasmon resonance analysis, and NF-${\kappa}B$ dependent luciferase activity was determined by luciferase analysis, and Uptake of cobrotoxin in astrocytes was identified by Confocal laser scanning microscope Results : 1. Compared with control, LPS-induced NF-${\kappa}B$ DNA binding activity was decreased significantly by 0.1, $0.5{\mu}g/m{\ell}$ of Cobrotoxin in Astrocyte. 2. Compared with control, LPS-induced NF-kB dependent luciferase expression was decreased significantly by 0.1, 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin in Astrocyte. 3. Compared with control, SNP induced P50, $I{\kappa}B$ expressions in astrocyte were decreased significantly by 0.1, 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin and P-$1{\kappa}B$ expression was decreased significantly by 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin. 4. Compared with control, LPS induced P50, $1{\kappa}B$ expressions in astrocyte were decreased significantly by 0.5 and $1{\mu}g/m{\ell}$ of Cobrotoxin. 5. Compared with control, SNP induced Cox-2, iNOS, CPLA2 expressions in astrocyte were decreased significantly by $1{\mu}g/m{\ell}$ of Cobrotoxin. 6. Compared with control, LPS induced Cox-2, cPLA2 expressions in astrocyte were decreased significantly by 0.1, 0.5, $1{\mu}g/m{\ell}$ of Cobrotoxin and iNOS expression was decreased significantly by 0.5, $1{\mu}g/m{\ell}$ of Cobrotoxin. 7. Compared with $0.5{\mu}g/m{\ell}$ of Cobrotoxin, SNP-induced NF-${\kappa}B$ DNA bindins activity in astrocyte was increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM. 8. Compared with $0.5{\mu}g/m{\ell}$ of Cobrotoxin, LPS-induced NF-${\kappa}B$ DNA binding activity in astrocyte was increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM, Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM, Cobrotoxin $0.5{\mu}g/m{\ell}$with GSH 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 5mM 9. Compared with $0.1{\mu}g/m{\ell}$ of cobrotoxin, SNP induced P50 expressions in astrocyte were increased significantly by Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 1mM, Cobrotoxin $0.5{\mu}g/m{\ell}$ with DTT 5mM Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 1mM and Cobrotoxin $0.5{\mu}g/m{\ell}$ with GSH 5mM. 10. The uptake of the labeled cobrotoxin into the cells was shown under a confocal laser scanning microscope. cobrotoxin was uptaken into the membrane and nucleus of astrocytes. Conclusions : In summary, the present results demonstrate that cobrotoxin directly binds to sulfhydryl group of p50 and IKKS resulting In the reduction of translocation of p50 and IkB release, thereby inhibits activation of NF-${\kappa}B$, and suggest that pico to nanomolar range of cobrotoxin could inhibit the expression of genes in the NF-${\kappa}B$ signal pathway.

  • PDF

Inhibition of Cyclooxygenase-2 Activity and Prostaglandin E2 Production through Down-regulation of NF-κB Activity by the Extracts of Fermented Beans (발효 콩의 NF-κB 활성 억제를 통한 cyclooxgenase-2 활성과 prostaglandin E2 생성 억제)

  • Lee, Hye-Hyeon;Park, Cheol;Kim, Min-Jeong;Seo, Min-Jeong;Choi, Sung-Hyun;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.388-395
    • /
    • 2010
  • Cyclooxygenase (COX)-2 is generally known as an inducible enzyme, and it produces arachidonic acid to prostaglandin $E_2$ ($PGE_2$), which has been demonstrated to play a critical role in inflammation. In the present study, we investigated the effects of the extracts of fermented beans including soybean (FS), black agabean (FBA) and yellow agabean (FYA), on the expression of COXs and production of $PGE_2$ in U937 human promonocytic cells. Treatment of phorbol 12-myristate 13-acetate (PMA) significantly induced pro-inflammatory mediators such as COX-2 expression and $PGE_2$ production, whereas the levels of COX-1 remained unchanged. However, pre-treatment with FS, FBA and FYA significantly decreased PMA-induced COX-2 protein as well as mRNA, which is associated with inhibition of $PGE_2$ production. Moreover, FS, FBA and FYA markedly prevented the increase of nuclear translocation of nuclear factor kappa B (NF-${\kappa}B$) p65 by PMA. Our data indicate that the extracts of fermented beans exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-${\kappa}B$ signaling pathway.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.

Anti-oxidative and Anti-inflammatory Effect of Fractionated Extracts of Cynomorium Songaricum (쇄양의 항산화 및 항염증 효과)

  • Kim, Kyung-Ae;Yi, Hyo-Seung;Yun, Hyun-Jeong;Park, Sun-Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1320-1331
    • /
    • 2009
  • Oxidative stress and inflammation are important events in the development of chronic inflammatory diseases including arthritis, atherosclerosis, diabetes, hypertension. Cynomorium songaricum (CS) has been used as a traditional Korean herbal medicine, and it is currently used in traditional clinics to treat frequent urination, spermatorrhea, weakness of the sinews and constipation in the folk medicine. The aim of this study was to determine whether fractionated extracts of CS inhibit free radical generation such as DPPH radical, superoxide radical, nitric oxide and peroxynitrite, production of nitrite an index of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. Our results indicated that the most superior extract which scavenged DPPH radical, reactive oxygen species (ROS) and RNS was CS ethyl acetate extract (CSEA). Moreover, CSEA significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1{\beta}$ and IL-6 formation in macrophages. Furthermore, CSEA treatment also blocked LPS-induced intracellular ROS production and the activation of NF-${\kappa}B$. These findings indicate that CSEA inhibits the production of pro-inflammatory mediators and cytokines via the suppression of ROS production and NF-${\kappa}B$ activation. Take together, these results indicate that CSEA has the potential for use as an natural anti-oxidant and an agent of anti-chronic inflammatory diseases.

Effect of Steroid Administration Ex Vivo on the IκB/NF-κB Pathway in Human Peripheral Blood Monocytes (스테로이드의 투여가 말초혈액 단핵구에서 IkB/NF-κB경로에 미치는 영향)

  • Yoon, Ho Il;Lee, Hee-Seok;Lee, Chang-Hoon;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.542-550
    • /
    • 2003
  • Background : Synthetic glucocorticoids are widely used in many chronic inflammatory diseases because of their excellent anti-inflammatory activity. Enhancing the transcription of $I{\kappa}B$ and preventing activated NF-${\kappa}B$ from binding to ${\kappa}B$ sites are thought to be the underlying mechanisms. But these data are largely derived from in vitro studies using cell lines. In this study, after administrating a steroid to volunteers, we evaluated the effect on the NF-${\kappa}B$ system. Methods : Prednisolone(0.5mg/kg/d) was orally administered to 5 healthy volunteers for 7 days. Before and after the administration, we sampled their peripheral blood monocytes, and performed western blot analysis both with stimulation, using IL-$1{\beta}$, LPS, TNF, and without stimulation(baseline). We also performed EMSA after stimulation with LPS. Results : After ingestion of the steroid, baseline expressions of $I{\kappa}B{\alpha}$ were increased in two of the subjects, while suppressed degradations of $I{\kappa}B{\alpha}$ to stimulations were observed in all five. In addition, the binding capacity of NF-${\kappa}B$ after the administration was decreased. Conclusion : Steroid plays such roles as enhancing the transcription of $I{\kappa}B{\alpha}$, suppressing the DNA binding capacity of NF-${\kappa}B$, and suppressing the degradation of $I{\kappa}B{\alpha}$.

The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea (국내산 삼채 에탄올 추출물의 항염증 효과)

  • Bae, Gi-Choon;Bae, Dae-Yeoll
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.55-61
    • /
    • 2012
  • Objectives : Allium Hookeri (AH) is a traditional herb to treat inflammatory diseases in India and Myanmar. Recently, AH cultivation was succeeded in South Korea. This study was performed to evaluate the anti-inflammatory effects of Korean AH in RAW264.7 cells, mouse macrophage cell line. Methods : To evaluate the anti-inflammatory effects of root of AH, we prepared the 70% ethanol extract, then we examined the productions of nitrite, and pro-inflammatory cytokines. To examine the nitrite, and cytokines, the RAW264.7 cells were treated with AH, then stimulated with lipopolysaccharide (LPS, 500 ng/ml) for 24 h. Then the cells were harvested for griess assay, ELISA and real-time reverse transcription polymerase chain reaction (RT-PCR). Also to detect the ability of AH to induce heme oxygenase-1 (HO-1), we examined the HO-1 expression using real time RT-PCR and western blot. Furthermore, we examined the mitogen activated-protein kinases (MAPKs) and nuclear factor kappa B (NF-${\kappa}B$) activation to find out the underlying mechanisms. Results : AH ethanol extract significantly inhibited the productions of nitrite and interleukin (IL)-$1{\beta}$. AH treatment increased the HO-1 expression dramatically at 1 h, then peaked at 3 h. When the HO-1 was inhibited by tin (Sn) protoporphryin-IX (SnPP), the anti-inflammatory action of AH was reversed. AH treatment inhibited the activation of p38, but not extracelluar signal-regulated kinase (ERK 1/2) and c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of inhibitory kappa B a (Ik-$B{\alpha}$) in the LPS-stimulated RAW 264.7 cells. Conclusions : These data could suggest that AH exerts anti-inflammatory influences through up-regulation of HO-1 and deactivation of p38.

Cornuside inhibits glucose-induced proliferation and inflammatory response of mesangial cells

  • Xiaoxin Li;Lizhong Guo;Fei Huang;Wei Xu;Guiqing Peng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.513-520
    • /
    • 2023
  • Cornuside is a secoiridoid glucoside compound extracted from the fruits of Cornus officinalis. Cornuside has immunomodulatory and anti-inflammatory properties; however, its potential therapeutic effects on diabetic nephropathy (DN) have not been completely explored. In this study, we established an in vitro model of DN through treating mesangial cells (MMCs) with glucose. MMCs were then treated with different concentrations of cornuside (0, 5, 10, and 30 μM). Cell viability was determined using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Levels of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were examined using enzyme-linked immunosorbent assay. Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were performed to detect the expression of AKT and nuclear factor-kappa B (NF-κB)-associated genes. We found that cornuside treatment significantly reduced glucose-induced increase in MMC viability and expression of pro-inflammatory cytokines. Moreover, cornuside inhibited glucose-induced phosphorylation of AKT and NF-κB inhibitor alpha, decreased the expression of proliferating cell nuclear antigen and cyclin D1, and increased the expression of p21. Our study indicates that the anti-inflammatory properties of cornuside in DN are due to AKT and NF-κB inactivation in MMCs.

Carpomitra costata Extract Alleviates Lipopolysaccharide-induced Neuroinflammatory Responses in BV2 Microglia through the Inactivation of NF-κB Associated with the Blockade of the TLR4 Pathway and ROS Generation

  • Park, Cheol;Cha, Hee-Jae;Hong, Su-Hyun;Kim, Suhkmann;Kim, Heui-Soo;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, we investigated the inhibitory potential of an ethanol extract of Carpomitra costata (EECC) (Stackhouse) Batters, a brown alga, against neuroinflammatory responses in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results showed that EECC significantly suppressed the LPS-induced secretion of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, with no significant cytotoxic effects. EECC also inhibited the LPS-induced expression of their regulatory enzymes, such as inducible NO synthase and cyclooxygenase-2. In addition, EECC downregulated the LPS-induced expression and production of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β. In the mechanistic assessment of the antineuroinflammatory effects, EECC was found to inhibit the nuclear translocation and DNA binding of nuclear factor-kappa B (NF-κB) by disrupting the degradation of the κB-α inhibitor in the cytoplasm. Moreover, EECC effectively suppressed the enhanced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88, as well as the binding of LPS to TLR4 in LPS-treated BV2 cells. Furthermore, EECC markedly reduced the LPS-induced generation of reactive oxygen species (ROS), demonstrating a strong antioxidative effect. Collectively, these results suggest that EECC repressed LPS-mediated inflammatory action in the BV2 microglia through the inactivation of NF-κB signaling by antagonizing TLR4 and/or preventing ROS accumulation. While further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant activity of EECC, the current findings suggest that EECC has a potential advantage in inhibiting the onset and treatment of neuroinflammatory diseases.