• 제목/요약/키워드: anti-inflammatory$NF-{\kappa}B$

검색결과 744건 처리시간 0.023초

Suppressing NF-κB/Caspase-1 Activation is a Mechanism Involved in the Anti-inflammatory Effect of Rubi Fructus in Stimulated HMC-1 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.137-143
    • /
    • 2023
  • Inflammation plays an important role in immune system's response to tissue injury and biological stimuli. However, excessive inflammation can cause tissue damage. Therefore, the development of naturally derived anti-inflammatory agents have received broad attention. In this study, we investigated the anti-inflammatory mechanism of Rubi Fructus (RF) extract on the mast cell-mediated inflammatory response. To determine the regulatory mechanism of RF in inflammatory reaction, we evaluated the effects of RF on secretion of interleukin (IL)-8, IL-6 and tumor necrosis factor (TNF)-α and activation of nuclear factor-κB (NF-κB) and caspase-1 in activated human mast cells-1 (HMC-1). The results showed that RF attenuated IL-8, IL-6 and TNF-α secretion in a concentration-dependent manner. Moreover, RF significantly attenuated caspase-1and NF-κB activation in activated HMC-1. Conclusively, the present results provide evidence that RF may be a promising agent for anti-inflammatory therapy.

Inhibitory Effect of Sargauum fulvellum Ethanolic Extract on LPS-Induced Inflammatory Reaction in RAW 264.7 Mouse Macrophages

  • Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Jeong, Da-Hyun;Ahn, Dong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제56권4호
    • /
    • pp.249-255
    • /
    • 2013
  • Recently, algae has been considered as a potential anti-inflammatory source due to its distinctive habitat environment exposing to light and high oxygen concentration. In present study, anti-inflammatory effect of brown alga, Sargassum fullvellum ethanol extract (SFEE), was examined. SFEE inhibited not only the production of nitric oxide and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) but also the expression of inducible nitric oxide synthase and cyclooxygenase 2 in LPS-induced RAW 264.7 cells without affecting cell viability. SFEE also suppressed the expression of nuclear factor kappa B (NF-${\kappa}B$), suggesting that SFEE could affect the expression of inflammation related cytokines and proteins through the regulation of NF-${\kappa}B$. Furthermore, formation of edema of the ear was 40% lower in mice treated with the highest dose (250 mg/kg) of SFEE than in the control mice. Thus, our study showed that SFEE may be a potential therapeutic anti-inflammatory drug.

LPS로 활성화된 대식세포에서 황련해독탕(黃連解毒湯) 물추출물의 염증매개물질 억제효과 (Anti-inflammatory Effects of the Aqueous Extract of Hwangnyeonhaedok-tang in LPS-activated Macrophage Cells)

  • 김대희;박숙자;정지윤;김상찬;변성희
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.39-47
    • /
    • 2009
  • Objectives : Hwangnyeonhaedok-tang (Huanglian Jiedu Tang; HHT) has been widely used for purging' 'fire' and lessening virulence of any pathogenic organism. However it has been rarely conducted to evaluate the immuno-biological activity. In this study, we evaluated anti-inflammatory effects of HHT in LPS-activated Raw264.7 cells. Methods : Cells were treated with $1\;{\mu}g/ml$ of LPS 1 h prior to the addition of HHT. Cell viability was measured by MTT assay. The production of NO was determined by reacting cultured medium with Griess reagent. PGE2 and proinflammatory cytokines were detected by ELISA. Expression of iNOS, COX-2, $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ were analyzed by immunoblot analysis. Results : All three doses of HHT (0.03, 0.10 and 0.30 mg/ml) had no significant cytotoxicity during the entire experimental period. The levels of NO and PGE2 were dramatically augmented by LPS compared to control. However, HHT extract dose-dependently reduced these increases. Expression of iNOS and COX-2 protein were also decreased by treatment with HHT extract. Furthermore, HHT extract significantly reduced the nuclear translocation of NF-${\kappa}B$ which is critical in regulating inflammation through transcription of iNOS and COX-2. In addition, HHT extract reduced the elevated production of inflammatory cytokines including TNF-$\alpha$, IL-$1{\beta}$ and IL-6. Conclusions : The results in this study demonstrate that HHT extract exerts anti-inflammatory activities through the inhibition of NO, PGE2 and proinflammatory cytokines production via the suppression of NF-${\kappa}B$.

Anti-inflammatory Effect of Heracleum moellendorffii Roots through the Inhibition of NF-κB and MAPK Signaling, and Activation of ROS/Nrf2/HO-1 Signaling in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.66-66
    • /
    • 2019
  • Heracleum moellendorffii roots (HM-R) have been long treated for inflammatory diseases such as arthritis, backache and fever. However, an anti-inflammatory effect and the specific mechanism of HM-R were not yet clear. In this study, we for the first time explored the anti-inflammatory of HM-R. Results: HM-R dose-dependently blocked LPS-induced NO and PGE2 production. In addition, HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. Furthermore, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. HM-R increased nuclear accumulation of Nrf2 and HO-1 expression. However, NAC reduced the increased nuclear accumulation of Nrf2 and HO-1 expression by HM-R. In HPLC analysis, falcarinol was detected from HM-R as an anti-inflammatory compound. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling, and activating ROS/Nrf2/HO-1 signaling. From these findings, HM-R may have potential to be a candidate for the development of anti-inflammatory drugs.

  • PDF

LPS로 유도된 RAW 264.7 대식세포에서 Argyreia capitata (Vahl) Choisy 추출물의 NF-κB pathway 조절을 통한 항염증 효능 평가 (Evaluation of anti-inflammatory effect by regulating NF-κB pathway of Argyreia capitata (Vahl) Choisy extract in LPS-induced RAW 264.7 macrophages)

  • 염가희;소보람;;엄상미;정성근
    • 한국식품과학회지
    • /
    • 제52권3호
    • /
    • pp.249-254
    • /
    • 2020
  • 우리는 한국생명공학연구원에서 제공한 소재를 탐색 후 ACE를 선별하였고 이 소재의 항염증 효능을 평가하였다. ACE는 세포독성이 없는 농도에서 LPS에 의한 iNOS의 발현과 NO의 생성을 유의적으로 억제하였다. ACE는 LPS에 의해 증가한 IKK, IκB, p65의 인산화와 IL-1β의 생성을 유의적으로 억제하였다. 이 논문은 ACE가 NO/iNOS 발현 및 NF-κB 신호 전달 경로의 억제를 통해 항염증 효능을 나타냄을 밝힌 최초의 논문으로서 의의를 가진다. 또한 이 결과를 바탕으로 ACE는 항염증 기능성식품 또는 의약품소재로써 활용가치가 높을 것으로 기대된다.

Kalopanaxsaponin B Ameliorates TNBS-Induced Colitis in Mice

  • Jeong, Jun-Ju;Jang, Se-Eun;Joh, Eun-Ha;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제20권5호
    • /
    • pp.457-462
    • /
    • 2012
  • The stem-bark of Kalopanax pictus (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for asthma, rhinitis, and arthritis in Chinese traditional medicine. To clarify anticolitic effect of KP, we examined anti-inflammatory effect of KP extract and kalopanaxsaponin B in lipopolysaccharide (LPS)-stimulated peritoneal macrophage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Of KP extracts, KP BuOH-soluble fraction most potently inhibited LPS-induced IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ expression, as well as NF-${\kappa}B$ activation. However, KP BuOH fraction increased IL-10, an anti-inflammatory cytokine. KP BuOH fraction also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. KP BuOH fraction also potently inhibited the expression of the pro-inflammatory cytokines, IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as the activation of NF-${\kappa}B$. Kalopanaxsaponin B, a main constituent of KP, inhibited TNBS-induced colonic inflammation, including colon shortening, and TNBS-increased myeloperoxidase activity pro-inflammatory cytokine expression and NF-${\kappa}B$ activation in mice. Based on these findings, KP, particularly its main constituent, kalopanaxsaponin B, may ameliorate colitis by inhibiting NF-${\kappa}B$ pathway.

NF-κB와 MAPKs 활성 저해를 통한 미야베 모자반(Sargassum miyabei Yendo) 에탄올 추출물의 항염증 활성 (Anti-Inflammatory Activity of Ethanol Extract of Sargassum miyabei Yendo via Inhibition of NF-κB and MAPK Activation)

  • 김민지;배난영;김꽃봉우리;박선희;장미란;임무혁;안동현
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.442-451
    • /
    • 2016
  • 본 연구에서는 미야베 에탄올 추출물의 항염증 활성을 확인하기 위해 LPS로 활성화된 RAW 264.7 세포와 croton-oil로 유도된 귀부종 동물 모델을 이용하였다. 그 결과, SMYEE 50 및 $100{\mu}g/ml$ 농도처리 시, LPS로 유도된 염증반응에서 $NF-{\kappa}B$ 활성 억제와 더불어 MAPKs의 인산화를 효과적으로 억제함을 보였다. LPS에 의해 증가된 NO와 전염증성 사이토카인의 분비량도 농도 의존적으로 감소하였다. 또한 SMYEE는 croton oil로 부종을 유발한 마우스모델에서 귀부종 억제효과를 나타내었고, 조직의 진피 두께 및 mast cell의 수가 현저히 감소하였음을 확인하였다. 이를 통해 SMYEE는 염증 반응의 전사인자인 $NF-{\kappa}B$ 및 MAPKs의 활성을 조절함으로써 iNOS와 COX-2의 발현 및 전염증성 매개인자인 NO, IL-6, $TNF-{\alpha}$$IL-1{\beta}$의 분비를 억제하여 항염증 활성을 가지는 것을 확인하였다. 현재까지 미야베 모자반내의 항염증 효능 물질에 관한 연구는 보고되지 않고 있으며 향후 실험을 통해 미야베 모자반 에탄올 추출물로부터 항염증 효과를 가지는 유효성분을 밝히기 위한 분리 연구를 진행할 예정이다.

오정환(五精丸)이 ob/ob mouse에서 Redox Status 및 NF-${\kappa}B$ Signaling에 미치는 영향 (Effects on Redox Status and NF-${\kappa}B$ Signaling by Ojunghwan)

  • 백기범;정지천
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1202-1209
    • /
    • 2008
  • Peroxynitrite ($ONOO^-$), superoxide anion radical (${\cdot}\;{O_2}^-$) and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, diabetes, obesity and atherosclerosis. The aim of this study was to investigate the effects of Ojunghwan on the generation of peroxynitrite ($ONOO^-$), nitric oxide (NO) and superoxide anion radical (${\cdot}\;{O_2}^-$), and on the expression of $NF-{\kappa}B$-dependent inflammatory proteins in ob/ob mice. Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups have received the standard chow. The experimental groups were fed with a diet of chow supplemented with 30 and 90 mg Ojung-hwan per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blot was performed using anti-phospho $I{\kappa}B-{\alpha}$, $anti-IKK-{\alpha}$, $anti-NF-{\kappa}B$ (p50, p65), anti-COX-2, anti-iNOS, anti-VCAM-1 and anti-MMP-9 antibodies, respectively. Ojunghwan inhibited the generation of $ONOO^-$, NO and ${\cdot}\;{O_2}^-$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondrial fraction in vitro. The generation of $ONOO^-$, NO, ${\cdot}\;{O_2}^-$ and $PGE_2$ were inhibited in the Ojunghwan-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas that were improved in the Ojunghwan-administered groups. Ojunghwan inhibited the expression of $phospho-I{\kappa}B-{\alpha}$, $IKK-{\alpha}$, $NF-{\kappa}B$ (p50, p65), COX-2, iNOS, VCAM-1 and MMP-9 genes. These results suggest that Ojunghwan is an effective scavenger of $ONOO^-$, ${\cdot}\;{O_2}^-$, NO and $PGE_2$, and has an inhibitory effect on the expression of $NF-{\kappa}B$-dependent inflammatory genes in ob/ob mice. Therefore, Ojunghwan might be used as a potential therapeutic drug against the inflammation process and inflammation- related diseases.

LPS로 유도한 복강대식세포에서 $I{\kappa}B-{\alpha}$ 분해억제에 의한 시경반하탕(柴梗半夏湯)의 항염증효과 (Shigyungbanha-tang Exhibits Anti-inflammatory Effects by Inhibiting $I{\kappa}B-{\alpha}$ Degradation in LPS-stimulated Peritoneal Macrophages)

  • 신조영;이시형;이승언
    • 대한한방내과학회지
    • /
    • 제28권3호
    • /
    • pp.442-452
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the toll-like receptor (TLR)-4 mediated anti-inflammatory effects of extract from Shigyungbanha-tang (SBT) on the peritoneal macrophage. Methods : To evaluate of TLR-4 mediated inflammatory of SBT. we examined NO and cytokine production in TRL-4 ligand (LPS : lipopolysaccharide) induced macrophages. Furthermore, we examined its molecular mechanism using western blot. Results : Extract from SBT itself does not have any cytotoxic effect in the peritoneal macrophages. Extract from SBT reduced LPS-induced nitric oxide (NO). tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin (IL)-6 and IL-12 production in peritoneal macrophages. SBT inhibited degradation of inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) in the TLR-4 mediated peritoneal macrophages. Conclusions : These results suggest that SBT inhibits NO and cytokines production through inhibiting nuclear factor-kappaB (NF-${\kappa}$B) activation in peritoneal macrophage and that SBT may be beneficial oriental medicine for inflammation.

  • PDF

3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-${\kappa}B$ Activation in BV2 Microglial Cells

  • Lee, Jae-Won;Bae, Chang-Jun;Choi, Yong-Jun;Kim, Song-In;Kim, Nam-Ho;Lee, Hee-Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.107-112
    • /
    • 2012
  • Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly suppressed LPS-induced excessive production of nitric oxide (NO) and expression of iNOS, which is responsible for the production of iNOS. THC also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$and TNF-${\alpha}$ in BV2 microgilal cells. Furthermore, THC significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm. Therefore, THC attenuated nuclear translocation of NF-${\kappa}B$, a major pro-inflammatory transcription factor. Taken together, the present study for the first time demonstrates that THC exhibits antiinflammatory activity through the suppression of NF-${\kappa}B$ transcriptional activation in LPS-stimulated BV2 microglial cells.