• Title/Summary/Keyword: anti-inflammation action

Search Result 215, Processing Time 0.031 seconds

Progress on Phytochemical and Atopic Dermatitis-related Study of the Root of Lithospermum erythrorhizon (자초 뿌리의 함유성분 및 아토피피부염 관련 연구현황)

  • Ju, Ji-Hoon;Cho, Hyun-Hwan;Lee, Yong-Sup
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.2
    • /
    • pp.73-88
    • /
    • 2010
  • Traditionally, the root of Lithospermum erythrorhizon Sieb. et Zucc(L.E) has been used as efficacious therapy for inflammation, burns, frostbite and skin ailments (e.g eczema and psoriasis). It contains isohexenylnaphthoquinone derivatives (shikonin and its esters) and furylhydroquinones (shikonofurans) in lipophilic fractions and caffeic acid oligomers (rosmarinic acid, lithospermic acid B) in polar fractions. Recently, new preparative isolation and analysis procedures of shikonin along with its oligomers from the extract of L. erythrorhizon by the combination of high-speed counter-current chromatography with high-performance liquid chromatography-diode array detection have also been introduced. Although there have been many reports on the wound healing, antiinflammatory, and anticancer effects, the research on the effects of anti-atopic dermatitis of the root of L. erythrorhizon were relatively scarce. However, in recent years, new information gathered from research efforts, on the anti-atopic dermatitis properties of the extract or constituents of L. erythrorhizon has been accumulated. In this paper, the findings and advance on the in vitro and in vivo activities of L. erythrorhizon and its constituents especially focused on antiinflammatory and anti-atopic dermatitis effects are summarized. The phytochemical constituents of L. erythrorhizon or its tissue cultures are also presented. Although there are few to verify or refute its activity in human, one result of clinical study of the extract of L. erythrorhizon on the atopic dermatitis patients was introduced to assess the possibility of its clinical use. The reported mechanisms of action and in vivo pharmacological studies in different animal models for the various types of extracts or constituents of L. erythrorhizon are supportive of its therapeutic potential or dietary supplement, however, more evidence from clinically relevant models, as well as systemic studies on the active constituents or the various types of standardized extracts at the cellular and molecular level, are required.

The Effects of Phellodendri Cortex Ex on Experimental Rat Model of Benign Prostatic Hyperplasia (황백(黃柏)이 전립선비대증(前立腺肥大症) Rat에 미치는 영향)

  • Park, Jung-Jun;Lee, Jang-Sik;Kim, Young-Seung
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.2
    • /
    • pp.131-141
    • /
    • 2010
  • Objective : Benign prostatic hyperplasia(BPH) is one of the most common diseased among elderly men. BPH can be treated with alpha-1 adrenergic blocker or $5{\alpha}$-reductase inhibitor(Finasteride) that reduces serum dihydrotestosterone(DHT). Phellodendri Cortex Ex has been broad studied on its chemical components, pharmacological activity, and clinical effects on anti-inflammation, anti-allergy, anti-tumor, immunity, antibacteria and other bioactivities. In this study, we investigated the therapeutic effects and action mechanism of Phellodendri Cortex Ex with a BPH induced by castration and testosterone treatment. Methods : Sprague-Dawley rats were treated with testosterone after castration for induction of experimental benign prostatic hyperplasia, which is similar to human benign prostatic hyperplasia in histopathological profiles. Phellodendri Cortex as an experimental specimen, and Finasteride as a positive control, were administered orally. The prostates were evaluated by histopathological changes, and the expression of $5{\alpha}$-reductase genes. Results : While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation, the rats treated with Phellodendri Cortex Ex showed a diminished range of the tissue damage. In the reverse transcription-polymerase chain reaction(RT-PCR) of $5{\alpha}$-reductase genes, Phellodendri Cortex inhibited the expression of $5{\alpha}$-reductase genes. Conclusions : These findings suggest that Phellodendri Cortex Ex may protect the glandular epithelial cells and also inhibit stromal proliferation in association with the suppression of $5{\alpha}$-reductase. From these results, we suggest that Phellodendri Cortex Ex could be a useful agent for treating the benign prostatic hyperplasia.

Anti-Inflammatory Mode of Isoflavone Glycoside Sophoricoside by Inhibition of Interleukin-6 and Cyclooxygenase-2 in Inflammatory Response

  • Kim, Byung-Hak;Chung, Eun-Yong;Ryu, Jae-Chun;Jung, Sang-Hun;Min, Kyung-Rak;Kim, Youngsoo
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.306-311
    • /
    • 2003
  • Soy, high dietary intake for the oriental population, is a main source of isoflavonoids. Sophoricoside (SOP) an isoflavone glycoside was isolated from immature fruits of Sophora japonica (Leguminosae family) and its inhibitory effect on chemical mediators involved in inflammatory response was investigated in this study. SOP inhibited the interleukin (IL)-6 bioactivity with an $IC_{50}$ value of 6.1 $\mu$M whereas it had no effects on IL-1$\beta$ and TNF-a bioactivities. SOP was identified as a selective inhibitor of cyclooxygenase (COX)-2 activity with an $IC_{50}$ value of 4.4 $\mu$ M, but did not show inhibitory effect on the synthesis of COX-2. However, SOP had no effect on the production of reactive oxygen species including superoxide anions and nitric oxide. These results revealed that in vitro anti-inflammatory action of SOP is significantly different from that of genistein known as a phytoestrogen of soy products. This experimental study has documented an importance of dietary soy isoflavonoids as multifunctional agents beneficial to human health, and will help to clarify protective mechanisms of SOP against inflammatory conditions.

The Effects of Gokgisaeng on Anti-inflammation and Rat C6 Glioma Cell Migration (곡기생(槲寄生)의 항염증 효능 및 암세포 이주저해에 미치는 영향)

  • Kim, Hyun-Young;Jang, Soo-Young;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.31-45
    • /
    • 2013
  • Objectives : Gokgisaeng (Korean mistletoe) is used for the treatment of inflammatory and cancer diseases in traditional Korean medicine and its major component lectins have been reported to induce nitric oxide (NO) in RAW 264.7 macrophages, and also induce apoptosis of various types of cancer cells, although its modulatory effects on cancer cell migration and macrophage activation is poorly understood. The aim of this study is to clarify molecular mechanisms of action responsible for the anti-inflammatory and antitumor migration potentials of Korean mistletoe extract (KME). Methods : We investigated the anti-inflammatory activity of KME on NO production and inducible nitric oxide synthase (iNOS) expression by lipopolysaccharide (LPS) in both RAW 264.7 macrophages and rat C6 glioma cells, and also evaluated inhibitory efficacy on glioma cell growth and migration. For assessment, XTT assay, nitrite assay, RT-PCR, scratch-wound and Boyden chamber assay, and western blot analysis were performed. Results : Previously reported, unlike the efficacy of Gokgisaeng lectin, KME inhibited NO production and iNOS expression, and suppressed pro-inflammatory mediators including IL-$1{\beta}$, IL-6, COX-2, iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, KME suppressed tumor cell growth and migration, and it also inhibited LPS-induced NO release and iNOS activation by down-regulating expression of protein kinase C (PKC) and phosphorylation of ERK in C6 glioma cells. Conclusions : Our research findings provide evidence that KME can play a significant role in blocking pro-inflammatory reaction and malignant progression of tumors through the suppression of NO/iNOS by down-regulating of inflammatory signaling pathways, PKC/ERK.

The anticancer effect of Bioconverted Danggui Liuhuang Decoction EtOH extracts in human colorectal cancer cell lines

  • Park, Hyo-Hyun;Park, Ji-Eun;Son, Eun-Kyung;Kim, Bo-Mi;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • Objective: The objective of our study was to investigate anti-cancer effects of Danggui Liuhuang Decoction extract bioconverted by protease liquid coenzyme of Aspergillus kawachii (DLD-BE), compared to a non-bioconverted DLD extract (DLD-E) and determine the underlying mechanisms. Methods: DLD-E and DLD-BE were evaluated for their ability to modulate these signaling pathways and suppress the proliferation of human colorectal cancer (CRC) cells, HCT-116, LoVo, and HT-29. The anti-cancer effects of DLD-E and DLD-BE were measured by using proliferation and migration assays, cell cycle analysis, Western blots, and real-time PCR. Results: In this study, treatment with DLD-E and DLD-BE at concentrations of 25-100 ㎍/mL inhibited proliferation and migration in human CRC cells. DLD-BE induced apoptotic cell death and decreased COX-2 expression in HT-29 cells. The mechanisms of action included modulation of the AKT and extracellular-signal-regulated kinase signaling cascades along with inhibition of COX-2 expression. The results demonstrate novel anti-cancer mechanisms of DLD-BE against the growth of human CRC cells. Thus, we propose that DLD-BE can be developed as a more potent supplement to inhibit colorectal tumor growth and intestinal inflammation than DLD-E.

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.

Regulation of Inflammatory Cytokine Production by Bee Venom in Rat Chondrocytes

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • Bee venom acupuncture (BVA), as a kind of herbal acupuncture, involved injecting diluted bee venom into acupoints and is used for pain, osteoarthritis and rheumatoid arthritis patients. BVA is growing in popularity, especially in Korea, and is used primarily for pain relief in many kinds of diseases. However, the effect of bee venom anti-inflammatory related action in lipopolysaccharide (LPS) induced chondrocyte stress have not been reported yet. The aim of this study was to investigate the effect of bee venom of cell viability and inflammatory cytokine in rat articular chondrocyte cultures stimulated with lipopolysaccharide. Inflammation was induced in rat chondrocytes by treatment with $10{\mu}g/m{\ell}$ LPS. The change of cell viability were decreased in chondrocytes after treatment with lipopolysaccharide. The cell viability revealed that BV exerted no significant cytotoxicity in the rat chondrocyte. Bee venom inhibited decreased cell viability in the presence of lipopolysaccharide ($10{\mu}g/m{\ell}$) in a dose dependent manner(0.1, 0.5, 1.0 and $5.0{\mu}g/m{\ell}$) at bee venom(p<0.05). Tumor necrosis factor (TNF)-${\alpha}$ production in the presence of lipopolysaccharide($1{\mu}g/m{\ell}$) was also inhibited in a dose dependent manner (p<0.05 from bee venom $0.1{\mu}g/m{\ell}$). Interleukin (IL)-6 production in the presence of lipopolysaccharide ($10{\mu}g/m{\ell}$) was inhibited as well (p<0.05 at bee venom 0.1, 0.5, 1.0 and $5.0{\mu}g/m{\ell}$, respectively). Our results demonstrate that bee venom was a anti-inflammatory agent of chondrocytes. Bee venom may exert its anti inflammatory effects through inhibition of TNF-${\alpha}$ and IL-6 synthesis, and may then pain relief and reduce the articular destruction.

The hyaluronan synthesis inhibitor 7-hydroxy-4-methylcoumarin inhibits LPS-induced inflammatory response in RAW 264.7 macrophage cells

  • Kim, Gwan Bo;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.263-268
    • /
    • 2021
  • 7-Hydroxy-4-methylcoumarin (7H-4MC) inhibits hyaluronan production in multiple cell lines and tissue types both in vitro and in vivo. It is a commercially available drug approved for human use, called hymecromone, in European and Asian countries to prevent biliary spasms. Nevertheless, as the pharmacological efficacy of 7H-4MC has not yet been reported in macrophages, this study investigated its anti-inflammatory effects and mechanism of action using lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. LPS-induced RAW 264.7 cells were treated with various concentrations of 7H-4MC (62.5, 125, 250, and 500 μM). The application of 7H-4MC significantly reduced nitric oxide and prostaglandin E2 production without cytotoxic effects. Additionally, 7H-4MC strongly decreased the expression of inducible nitric oxide synthase and cyclooxygenase. Furthermore, 7H-4MC reduced the production of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Finally, 7H-4MC exerted its potent anti-inflammatory actions via the upregulation of IκB-α production, which led to the inhibition of nuclear factor-κB (NF-κB) activity. These results, obtained in macrophage cell lines, suggest that 7H-4MC prevents inflammatory diseases via the NF-κB signaling pathway and that its use could be beneficial for human health. Ultimately, this is the first report describing the anti-inflammatory activity of 7H-4MC in a macrophage cell line.

Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells

  • Jang, Jaewoong;Song, Jaewon;Sim, Inae;Yoon, Yoosik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.307-319
    • /
    • 2021
  • Dysregulation of the Wnt pathway causes various diseases including cancer, Parkinson's disease, Alzheimer's disease, schizophrenia, osteoporosis, obesity and chronic kidney diseases. The modulation of dysregulated Wnt pathway is absolutely necessary. In the present study, we evaluated the anti-inflammatory effect and the mechanism of action of Wnt-C59, a Wnt signaling inhibitor, in lipopolysaccharide (LPS)-stimulated epithelial cells and macrophage cells. Wnt-C59 showed a dose-dependent anti-inflammatory effect by suppressing the expression of proinflammatory cytokines including IL6, CCL2, IL1A, IL1B, and TNF in LPS-stimulated cells. The dysregulation of the Wnt/β-catenin pathway in LPS stimulated cells was suppressed by WntC59 treatment. The level of β-catenin, the executor protein of Wnt/β-catenin pathway, was elevated by LPS and suppressed by Wnt-C59. Overexpression of β-catenin rescued the suppressive effect of Wnt-C59 on proinflammatory cytokine expression and nuclear factor-kappa B (NF-κB) activity. We found that the interaction between β-catenin and NF-κB, measured by co-immunoprecipitation assay, was elevated by LPS and suppressed by Wnt-C59 treatment. Both NF-κB activity for its target DNA binding and the reporter activity of NF-κB-responsive promoter showed identical patterns with the interaction between β-catenin and NF-κB. Altogether, our findings suggest that the anti-inflammatory effect of Wnt-C59 is mediated by the reduction of the cellular level of β-catenin and the interaction between β-catenin and NF-κB, which results in the suppressions of the NF-κB activity and proinflammatory cytokine expression.

Anti-cancer effect of farrerol induced apoptosis through activating p38 MAPK in Human breast cancer MCF-7 cells (인간 유방암 세포주 MCF-7에 대한 farrerol의 p38 MAPK 활성화와 세포사멸 유도를 통한 항암 효과)

  • Chae, Jongbeom;Lee, Seul Gi;Nam, Ju-Ock
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.147-152
    • /
    • 2020
  • Farrerol is a flavanone isolated from the traditional Chinese herb 'Man-shan-hong' (Rhododendron dauricum L.). Farrerol has been reported to have various bioactivities including anti-oxidant, anti-inflammation, and anti-fungal. However, anti-cancer effect of farrerol has not yet been reported in MCF-7 breast cancer cells. In the present study, we investigated the anti-cancer effect of farrerol on MCF-7 cells. Farrerol decreased viability and induced apoptosis of MCF-7 cells in a dose dependent manner. Ferrerol exhibited a significant anti-proliferation effect with a half-maximal inhibitory concentration (IC50) values of 145.04±1.4 μM in MTT assay, when MCF-7 cells were treated with ferrerol for 48 h. Also, ferrerol induced apoptotic bodies of MCF-7 cells as evaluated by TUNEL assay and Annexin V/PI staining using FACS. By mechanism of action, ferrerol regulated the activation of p38 mitogen-activated protein kinase and altered the expression level of BAX, Bcl-2, and Poly ADP Ribose Polymerase in MCF-7 cells. In summary, our finding demonstrated that ferrerol has anti-cancer effect through regulating the activation and expression of apoptosis-related proteins in MCF-7 cells.