• Title/Summary/Keyword: anti-corrosion evaluation

Search Result 54, Processing Time 0.025 seconds

An evaluation method on the surface and interface characteristics of ultra-thin carrier copper foil (캐리어 극박 동박 표면 및 계면 특성평가에 관한 연구)

  • Heo, Jin-Yeong;Lee, Chang-Myeon;Gu, Seok-Bon;Jeon, Jun-Mi;Lee, Hong-Gi;Kim, Ik-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.163-163
    • /
    • 2015
  • 본 연구는 금속 캐리어 소재상에 화학 동도금(Chemical Copper)으로 형성된 극박 동박 표면 및 석출막의 특성을 평가하기 위하여 다양한 진공 분석장비들을 활용하여 평가한 결과이다. 연구에 사용된 극박 동박은 현재 캐리어박 선점률이 높은 M, J, Y사의 제품이다. 최상층 구리 표면에서 조직, 조성, 표면조도를 평가하였고, 계면 평가에서는 copper layer 및 nodule layer, adhesion layer, anti-corrosion layer, release layer, substrate에서의 물성 및 특성 정밀평가 결과 각 특성치 및 구조는 Cr, Zn, Ni, Co, Cr계 thermal anti layer임의 확인이 가능하였다.

  • PDF

A Study on the Processing of Anti-Corrosive Composites for Propeller Shaft of the Ship and the Evaluation of Its Static and Fatigue Properties (선박용 프로펠러축 방식처리용 복합재료의 제조와 그 정적 및 피로특성 평가에 관한 연구)

  • 김윤해;왕지석;배창원
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 1998
  • Kind 1 propeller shaft in ships is the shaft which is provided with effective measures against corrosion by sea water, or the shaft which is made of approved corrosion resistance materials. The propeller shaft other than specified above is Kind 2. Thus, this study is mainly concerned with the resistance to fatigue damage in sea water against stress concentrations due to the notches. The results obtained can be summarized as follows; (1) The stress increases with curing time, however, when the curing time reaches at 96 hours the stress becomes a constant value. The elongation decreases with curing time, however, when the curing time reaches at 48 hours the elongation becomes a constant value. Thus, in case of FRP coating on propeller shaft, it is necessary to cure for 48 hours at least. (2) The relation of $\sigma$$_n$-K$_t$ is to be classified into two parts, which is a part where fracture nominal stress, $\sigma$$_n$, decreases with increasing $K_t$, and a part where $\sigma$$_n$ is nearly constant independent of $K_t$. (3) According to a linear notch mechanics, the measure of severity controlling the fracture in notched FRP body is the notch root radius, $\rho$. The notched static strength of an arbitrary specimen will be estimated from $\sigma$$_{max}$ -1/$\rho$ curve. (4) Through the observation of cross section after fatigue test, the part of interface was kept good condition irrespective of loading conditions.

  • PDF

An evaluation method on the surface characteristics of ultra-thin copper foil using chemical copper plating (화학 동도금을 이용한 캐리어 극박 동박 표면 특성 평가에 관한 연구)

  • Heo, Jin-Yeong;Lee, Hong-Gi;Gu, Seok-Bon;Jeon, Jun-Mi;Kim, Ik-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.129-129
    • /
    • 2014
  • 본 연구는 알루미늄 및 구리 캐리어 소재상에 화학 동도금(Chemical Copper)으로 형성된 극박 동박 표면 및 석출막의 특성 평가에 관한 연구이다. 평가에 사용된 극박 동박은 현재 캐리어박 선점률이 높은 M, J, Y사의 제품이다. 최상층 구리 표면에서 조직, 조성, 표면조도를 평가하였고, 단면 평가에서는 copper layer 및 nodule layer, adhesion layer, anti-corrosion layer, release layer, substrate에서의 물성 및 특성을 평가하였다.

  • PDF

Development and Performance Evaluation of Anti-cavitation Paint with a Lamella Glass-flake (판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가)

  • Park, Hyeyoung;Kim, Sung-gil;Kim, Sang-suk;Choi, I-chan;Kim, Byungwoo;Kim, Seung-jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • In response to the cavitation caused by the partial vacuum caused by the fluid flow, a paint was developed by dispersing the lamella-shaped glass-flake in resin for anti-cavitation. This composite paint was developed by using the inorganic filler (lamella shaped glass-flake) and the NBR (Acrylonitrile-butadiene rubber) which was modified epoxy resin. Especially, the glass-flake was a thin film with a thickness of about 100~200 nm and length of about $20{\sim}30{\mu}m$, the aspect ratio was about 200 to 300 times that of the plate-shaped. So the paint for anti-cavitation have shown excellent performance in corrosion resistance. The results of evaluating anti-cavitation performance was below, tensile strength $4.8{\sim}6N/mm^2$ or more, rupture elongation 30% or higher, abrasive speed $10mm^2/h$ or less. In particular, it showed more than twice the superior performance compared to existing advanced foreign products in anti-cavitation performance evaluation.

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

Performance Evaluation of Antioxidizing Device for Protection of Car Body (자동차 차체 보호를 위한 산화방지 장치의 성능 평가)

  • Kim, Hae Sik;Yun, Yeong Jin;Ji, Jong Gi
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.444-456
    • /
    • 2002
  • To protect the occurrence of the oxidation of car body, we developed antioxidizing device made with sacrificial anode. Because car body is made of iron and iron-alloy and oxidation potential of Mg, Al and Zn is higher than that of iron, sacrificial anodes were made with Mg, Al and Zn. Accordingly, Mg, Al and Zn are better oxidizing than car body, iron and iron-alloy can be protected from oxidizing. We have made an antioxidizing device and evaluated their anti-corrosive effect for iron piece in the solution of hydrochloric, nitric and sulfuric acid using balance, SEM and XPS. When iron pieces were connected with antioxidizing device of car body, weight loss by oxidation was remarkably reduced and surface corrosion of iron piece was protected. It was shown that the surface of iron pieces which is not con-nected to the device was changed to iron(Ⅲ) oxide, Fe$_2$O$_3$. Therefore, if this device is attached to car body, corrosion and oxidation of car body will be reduced, considerably.

Chemical Effects to Cement Concrete by Grease Oxidation (그리이스의 산화가 시멘트 콘크리트에 미치는 화학적 영향)

  • 정근우;조원오;김영운;임수진;이은아;김성욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.99-105
    • /
    • 2000
  • Greases composed of base oil and thickener are widely used in the purpose of lubrication and anti-corrosion of machinery. However, greases are sometimes oxidized and decomposed by heat of friction, and produced organic acid. And the greases leaked out ordinary spot make the concrete structures weaken. In this study, the chemical effects of the greases with the concrete structures were investigated through oxidation reaction under pressure and oxygen, and evaluated by the analysis of TAN, Ca content, FT-IR and XRD of grease and cement powder after the oxidation reaction. As the results, TAN value decreased with the increase of the content of cement because of neutralization of organic acid produced by the oxidation of grease with calcium contained in the cement. The content of calcium linearly increased with the increase of cement due to calcium salt by neutralization of acid. Also, according to XRD results of the cement powder oxidized at 99 $^{\circ}C$, the diffraction peak due to calcium hydroxide decreased in comparison with that at room temperature because of the reaction of calcium and organic acid.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

Development and Application of Anti-Corrosive Steel Using Electro-Deposition of Sea Water (2)- Evaluation of Application Rebar with Electro-Deposition Using Sea Water (해수전착 코팅을 이용한 내부식성 철근의 개발 및 적용성에 대한 연구 (2) -해수전착된 구조용 철근의 적용성 평가)

  • Kwon, Seung Jun;Lee, Sang Min;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.155-162
    • /
    • 2012
  • When RC (Reinforced Concrete) structures are exposed to sea water, steel corrosion can occur and this leads a degradation of structural performance. Referring the electro-deposition system with sea water from the 1st step research, durability and structural performance are evaluated in coated steel and RC members containing it in the 2nd research. In the durability performance test, Half Cell Potential test is performed and the coated steel is evaluated to have the high resistance to corrosion, which shows only 35% of corrosion velocity in normal (bare) steel. In the structural performance test, tensile strength, adhesive strength, and flexural/shear in RC member are performed. For the electro-deposit coated steel, increasing ratios of 3.2% and 8.8% are evaluated in the test of tensile strength and adhesive strength, respectively. For the structural test in RC member, there is no big difference between RC members with coated and non-coated steel in ultimate load and failure pattern It is evaluated that the chemical compound with $CaCO_3$ and $Mg(OH)_2$ from electro-deposition causes slightly increased structural performance. The electro-deposit coated steel can be more widely applied after performance verification from several tests like fatigue, resistance to impact, and long term-submerging test.

A Study on the Evaluation of the Environmental Performance of Salt Damage in Concrete Bridges under Marine Environment (해양 환경하 콘크리트 교량의 염해환경 성능평가 연구)

  • Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun;Hong, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.60-69
    • /
    • 2018
  • This study aims to investigate in the assessment of salt damage conditions in concrete structures under marine environment conditions. It aims also to improve the durability of new concrete bridge through applying the life prediction method of salt damaged bridges. As measuring chloride contents of these bridges on the southwest coastal area, it is shown that the average amount of chloride on these surfaces close to shore is $10.5kg/m^3$. This figure is much higher than that of the Standard Specification for Concrete($1.5kg/m^3{\sim}2.5kg/m^3$). In contrast, it is shown the average amount of chloride on these surfaces in tide zone is $13.1kg/m^3$. Its figure is much lower than that of the Standard Specification for Concrete($20kg/m^3$). And the life of bridges is estimated about 17 years. To improve the durability for salt damage, these bridges are applied to surface treatment method which the replacement rate of furnace slag is 60%. Under this condition, it is expected to be 110 years. Consequently, it is clear that the use of slag replacement rate, surface treatment agent, and anti-corrosion agent to control chloride penetration effects of a submerge-based concrete bridge will be required.