• 제목/요약/키워드: anti-cancer drugs

검색결과 295건 처리시간 0.025초

Deciphering the underlying mechanism of liver diseases through utilization of multicellular hepatic spheroid models

  • Sanghwa Kim;Su-Yeon Lee;Haeng Ran Seo
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.225-233
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) is a very common form of cancer worldwide and is often fatal. Although the histopathology of HCC is characterized by metabolic pathophysiology, fibrosis, and cirrhosis, the focus of treatment has been on eliminating HCC. Recently, three-dimensional (3D) multicellular hepatic spheroid (MCHS) models have provided a) new therapeutic strategies for progressive fibrotic liver diseases, such as antifibrotic and anti-inflammatory drugs, b) molecular targets, and c) treatments for metabolic dysregulation. MCHS models provide a potent anti-cancer tool because they can mimic a) tumor complexity and heterogeneity, b) the 3D context of tumor cells, and c) the gradients of physiological parameters that are characteristic of tumors in vivo. However, the information provided by an multicelluar tumor spheroid (MCTS) model must always be considered in the context of tumors in vivo. This mini-review summarizes what is known about tumor HCC heterogeneity and complexity and the advances provided by MCHS models for innovations in drug development to combat liver diseases.

Synthesis and Characterization of the Tumor Targeting Mitoxantrone-Insulin Conjugate

  • Liu, Wen-Sheng;Yuan-Huang;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • 제26권11호
    • /
    • pp.892-897
    • /
    • 2003
  • Anticancer drugs have serious side effects arising from their poor malignant cells selectivity, Since insulin receptors highly express on the cytomembrane of some kind of tumor cells, using insulin as the vector was expected to reduce serious side effects of the drugs. The objective of this study was to evaluate the tumor targeting effect of the newly synthesized mitoxantrone-insulin conjugate (MIT-INS) with the drug loading of 11.68%. In vitro stability trials showed MIT-INS were stable in buffers with different pH (2-8) at $37^{\circ}C$ within 120 h (less than 3% of free MIT released), and were also stable in mouse plasma within 48 h (less than 1 % of free MIT released). In vivo study on tumor-bearing mice showed that, compared with MIT [75.92 $\mu g \cdot$ h/g of the area under the concentration-time curve (AUC) and 86.85 h of mean residence time (MRT)], the conjugates had better tumor-targeting efficiency with enhanced tumor AUC of 126.53 1l9 h/g and MTR of 151.95 h. The conjugate had much lower toxicity to most other tissues with targeting indexes ($TI^c$) no larger than 0.3 besides good tumor targeting efficiency with $TI^c$ of 1.67. The results suggest the feasibility to promote the curative effect in ca.ncer chemotherapy by using insulin as the vector of anti-cancer drugs.

Angiogenesis Markers in Breast Cancer - Potentially Useful Tools for Priority Setting of Anti-Angiogenic Agents

  • Keyhani, Elahe;Muhammadnejad, Ahad;Behjati, Farkhondeh;Sirati, Fereidoon;Khodadadi, Faranak;Karimlou, Masoud;Moghaddam, Fatemeh A.;Pazhoomand, Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7651-7656
    • /
    • 2013
  • Background: Breast cancer is the most common malignancy among women in both developed and developing countries. The burden is increasing in low-income and middle-income countries (LMCs) and threatens the public health of such societies. Introduction of expensive monoclonal antibodies to cancer treatment regimens poses a real challenge in the health systems of LMCs. Despite controversy of cost-effectiveness of bevacizumab in breast cancer, some studies indicate gain of patients from this drug. The present study aimed to propose a priority setting model for administration of anti-angiogenic agents in breast cancer via assessment of tumor angiogenesis by the microvessel density (MVD) method and associations with clinicopathological characteristics (including simultaneous mutations of TP53 and HER-2 genes). Materials and Methods: Age, axillary lymph nodes status, tumor size, stage and grade, estrogen and progesterone receptors status, HER-2/neu status (by immunohistochemistry and FISH test), TP53 mutation, Ki-67 (for proliferation assay) and CD34 (for angiogenesis assay) were assessed in 111 breast cancer patients. The molecular subtype of each tumor was also determined and correlations of simultaneous mutations of HER-2 and p53 genes with angiogenesis and other clinicopathological characteristics were evaluated. Results: There were significant associations between simultaneous mutations of HER-2 and p53 genes and all other parameters except tumor size. The degree of angiogenesis in the ERBB2 subtype was greater than the others. Younger patients showed a higher angiogenesis rate rather those older than 50 years. Conclusions: Our results demonstrated that patients with simultaneous mutations of HER-2 and p53 genes, those with ERBB2 molecular subtype and also younger women (often triple negative) seem more eligible for obtaining anti-angiogenic agents. These results suggest a model for priority setting of patients with breast cancer for treatment with anti-angiogenic drugs in LMCs.

The MicroRNA-551a/MEF2C Axis Regulates the Survival and Sphere Formation of Cancer Cells in Response to 5-Fluorouracil

  • Kang, Hoin;Kim, Chongtae;Ji, Eunbyul;Ahn, Sojin;Jung, Myeongwoo;Hong, Youlim;Kim, WooK;Lee, Eun Kyung
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2019
  • microRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment. miR-551a-expressing cells (Hep3B-lenti-miR-551a) were resistant to 5-FU-induced cell death, and after 5-FU treatment, and showed significant increases in cell viability, cell survival, and sphere formation. It was further shown that myocyte-specific factor 2C is the direct target of miR-551a. Our results suggest that miR-551a plays a novel function in regulating 5-FU-induced cell death, and targeting miR-551a might be helpful to sensitize cells to anti-cancer drugs.

Luteolin Sensitizes Two Oxaliplatin-Resistant Colorectal Cancer Cell Lines to Chemotherapeutic Drugs Via Inhibition of the Nrf2 Pathway

  • Chian, Song;Li, Yin-Yan;Wang, Xiu-Jun;Tang, Xiu-Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2911-2916
    • /
    • 2014
  • Oxaliplatin is a first-line therapy for colorectal cancer, but cancer cell resistance to the drug compromises its efficacy. To explore mechanisms of drug resistance, we treated colorectal cancer cells (HCT116 and SW620) long-term with oxaliplatin and established stable oxaliplatin-resistant lines (HCT116-OX and SW620-OX). Compared with parental cell lines, $IC_{50}$s for various chemotherapeutic agents (oxaliplatin, cisplatin and doxorubicin) were increased in oxaliplatin-resistant cell lines and this was accompanied by activation of nuclear factor erythroid-2 p45-related factor 2 (Nrf2) and NADPH quinone oxidoreductase 1 (NQO1). Furthermore, luteolin inhibited the Nrf2 pathway in oxaliplatin-resistant cell lines in a dose-dependent manner. Luteolin also inhibited Nrf2 target gene [NQO1, heme oxygenase-1 (HO-1) and $GST{\alpha}1/2$] expression and decreased reduced glutathione in wild type mouse small intestinal cells. There was no apparent effect in Nrf2-/- mice. Luteolin combined with other chemotherapeutics had greater anti-cancer activity in resistant cell lines (combined index values below 1), indicating a synergistic effect. Therefore, adaptive activation of Nrf2 may contribute to the development of acquired drug-resistance and luteolin could restore sensitivity of oxaliplatin-resistant cell lines to chemotherapeutic drugs. Inhibition of the Nrf2 pathway may be the mechanism for this restored therapeutic response.

기초간호자연과학의 병태생리학, 병원미생물, 약물의 기전과 효과 내용별 필요도에 대한 연구 (A study on the degree of need of the knowledge of pathophysiology, clinical microbiology and mechanisms and effects of drugs in clinical nurses)

  • 최명애;변영순;서영숙;황애란;김희승;홍해숙;박미정;최스미;이경숙;서화숙;신기수
    • Journal of Korean Biological Nursing Science
    • /
    • 제2권1호
    • /
    • pp.1-19
    • /
    • 2000
  • The purpose of this study was to define the content of the requisite knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs needed for clinical knowledge for nursing practice. Contents of knowlege on pathological physiology, clinical microbiology, and mechanisms and effects of drugs were constructed from syllabus of basic nursing subjects in 4 colleges of nursing, and textbooks. The degree of need of 72 items was measured with a 4 point scale. The subjects of this study were college-graduated 136 nurses from seven university hospital in Seoul and three in Chonnam Province, Kyungbook Province, and Inchon. They have been working at internal medicine ward, surgical ward, intensive care unit, obstetrics and gynecology ward, pediatrics ward, opthalmology ward, ear, nose, and throat ward, emergency room, rehabilitation ward, cancer ward, and hospice ward. The results were as follows : 1. The highest scored items of the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs necessary for nursing practice were side effects of drugs, anticoagulants, mechanisms of drugs, antihypertensive drugs, tolerance and addiction of drugs, interactions among drugs, hospital infection in the order of importance. The lowest scored item was structure of microorganisms. 2. The highest order of need according to unit was repair in tissue injury unit, definition etiology classification of inflammation in inflammation unit, transplantation and immunologic response in alterations in immunity unit, thrombus and thrombosis in disorders of cardiovascular function unit, gene disorders in genetic disorders unit, hospital infection in infection unit, virus in microorganisms unit, side reactions of drugs in introduction unit, anticonvulsants in drugs for central nervous system unit, local anesthesia in anesthesia unit, anticoagulants in drugs for cardiovascular system unit, anti-inflammatory drugs in antibiotics unit, anti-ulcer drugs in drugs for digestive system unit, and bronchodilators in drugs for respiratory system unit. 3. The common content of the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs needed for all clinical areas in nursing were side effects of drugs, anticoagulants, interactions among drugs, and hospital infection. However, the degree of need of each pathological physiology, clinical microbiology, clinical microbiology, and mechanisms and effects of drugs was different depending on clinical areas. 4. Significant differences in the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs necessary for nursing practice such as tissue changes due to injurious stimuli, degenerative changes of tissue, alterations in metabolism of carbohydrates, ischemia, hyperemia and congestion, hospital infection, structure of microorganism, classification of microorganism, bacteria, virus, antidepressants, antipsychotic drugs, antiemetic drugs, antiparkinsonism drugs, antianxiety drugs, antibiotics, tuberculostatics, antiviral drugs, antifungal drugs, parasiticides, antiulcer drugs, antidiarrheais, and anti constipation drugs were shown according to the work area. 5. Significant differences in the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs necessary for nursing practice such as transplantation and immunologic response, alterations in the metabolism of uric acid, structure of microorganism, classification of microorganism, immunosuppressants, drugs for congestive heart failure were demonstrated according to the duration of work. Based on these findings, all the 72 items constructed by Korean Academic Society of Basic Nursing science should be included as contents of the knowledge of pathophysiology, clinical microbiology, and mechanisms and effects of drugs.

  • PDF

Alkaloids from Beach Spider Lily (Hymenocallis littoralis) Induce Apoptosis of HepG-2 Cells by the Fas-signaling Pathway

  • Ji, Yu-Bin;Chen, Ning;Zhu, Hong-Wei;Ling, Na;Li, Wen-Lan;Song, Dong-Xue;Gao, Shi-Yong;Zhang, Wang-Cheng;Ma, Nan-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9319-9325
    • /
    • 2014
  • Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose ($0.8{\mu}g/ml$) significantly inhibiting proliferation. The non-tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells.

Anticancer Properties of Icariside II in Human Oral Squamous Cell Carcinoma Cells

  • Kim, In-Ryoung;Kim, Young-Seok;Yu, Su-Bin;Kang, Hae-Mi;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2016
  • OSCC is currently the most common malignancy of the head and neck, affecting tens of thousands of patients per year worldwide. Natural flavonoids from plants are potential sources for novel anti-cancer drugs. Icariin is the active ingredient of flavonol glycoside, which is derived from the medical plant Herba Epimedii. A metabolite of icariin, icariside II exhibits a variety of pharmacological actions, including anti-rheumatic, anti-depressant, cardiovascular protective, and immunomodulatory functions. However, the exact mechanism causing the apoptosis-inducing effect of icariside II in OSCC is still not fully understood. In the present study, we assessed the anti-cancer effect of icariside II in OSCC cell lines by measuring its effect on cell viability, cell proliferation, and mitochondria membrane potential (MMP). Icariside II treatment of OSCC cells resulted in a dose- and time-dependent decrease in cell viability. Hoechst staining indicated apoptosis in icariside II-treated HSC cells. Icariside II inhibited cell proliferation and induced apoptosis in HSC cells, with significant increases in all present parameters in HSC-4 cells. The results clearly suggested that icariside II induced apoptosis via activation of intrinsic pathways and caspase cascades in HSC-4 cell lines. The collective findings of the study suggested that Icariside II is a potential treatment for OSCC; in addition, the data could provide a basis for the development of a novel anti-cancer strategy.

KAT8/MOF-Mediated Anti-Cancer Mechanism of Gemcitabine in Human Bladder Cancer Cells

  • Zhu, Huihui;Wang, Yong;Wei, Tao;Zhao, Xiaoming;Li, Fuqiang;Li, Yana;Wang, Fei;Cai, Yong;Jin, Jingji
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.184-194
    • /
    • 2021
  • Histone acetylation is a well-characterized epigenetic modification controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Imbalanced histone acetylation has been observed in many primary cancers. Therefore, efforts have been made to find drugs or small molecules such as HDAC inhibitors that can revert acetylation levels to normal in cancer cells. We observed dose-dependent reduction in the endogenous and exogenous protein expression levels of KAT8 (also known as human MOF), a member of the MYST family of HATs, and its corresponding histone acetylation at H4K5, H4K8, and H4K16 in chemotherapy drug gemcitabine (GEM)-exposed T24 bladder cancer (BLCA) cells. Interestingly, the reduction in MOF and histone H4 acetylation was inversely proportional to GEM-induced γH2AX, an indicator of chemotherapy drug effectiveness. Furthermore, pGL4-MOF-Luc reporter activities were significantly inhibited by GEM, thereby suggesting that GEM utilizes an MOF-mediated anti-BLCA mechanism of action. In the CCK-8, wound healing assays and Transwell® experiments, the additive effects on cell proliferation and migration were observed in the presence of exogenous MOF and GEM. In addition, the promoted cell sensitivity to GEM by exogenous MOF in BLCA cells was confirmed using an Annexin V-FITC/PI assay. Taken together, our results provide the theoretical basis for elucidating the anti-BLCA mechanism of GEM.

Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana

  • Kim, Mi Seon;Lee, Yunmi;Sung, Gi-Ho;Kim, Ji Hye;Park, Jae Gwang;Kim, Han Gyung;Baek, Kwang Soo;Cho, Jae Han;Han, Jaegu;Lee, Kang-Hyo;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.367-373
    • /
    • 2015
  • Cordyceps species including Cordyceps bassiana are a notable anti-cancer dietary supplement. Previously, we identified several compounds with anti-cancer activity from the butanol fraction (Cb-BF) of Cordyceps bassiana. To expand the structural value of Cb-BF-derived anti-cancer drugs, we employed various chemical moieties to produce a novel Cb-BF-derived chemical derivative, KTH-13-amine-monophenyl [4-isopropyl-2-(1-phenylethyl) aniline (KTH-13-AMP)], which we tested for anti-cancer activity. KTH-13-AMP suppressed the proliferation of MDA-MB-231, HeLa, and C6 glioma cells. KTH-13-AMP also dose-dependently induced morphological changes in C6 glioma cells and time-dependently increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, the levels of the active full-length forms of caspase-3 and caspase-9 were increased. In contrast, the levels of total forms of caspases-3, caspase-8, caspase-9, and Bcl-2 were decreased in KTH-13-AMP treated-cells. We also confirmed that the phosphorylation of STAT3, Src, and PI3K/p85, which is linked to cell survival, was diminished by treatment with KTH-13-AMP. Therefore, these results strongly suggest that this compound can be used to guide the development of an anti-cancer drug or serve as a lead compound in forming another strong anti-proliferative agent.