• 제목/요약/키워드: anti-cancer agents

검색결과 336건 처리시간 0.024초

An Overview on Recent Progress of Anti-Cancer Agents

  • Kurakata, Shinichi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.120-126
    • /
    • 2002
  • PDF

Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin

  • Hussain, Arif;Sharma, Chhavi;Khan, Saniyah;Shah, Kruti;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2939-2946
    • /
    • 2015
  • Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

Ornithine Decarboxylase: A Promising and Exploratory Candidate Target for Natural Products in Cancer Chemoprevention

  • Luqman, Suaib
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2425-2427
    • /
    • 2012
  • Ornithine decarboxylase (ODC), the first enzyme in the polyamine biosynthesis, plays an important role in tumor progression, cell proliferation and differentiation. In recent years, ODC has been the subject of intense study among researchers, as a target for anti-cancer therapy and specific inhibitory agents, have the potential to suppress carcinogenesis and find applications in clinical therapy. In particular, it is suggested that ODC is a promising candidate target for natural products in cancer chemoprevention. Future exploration of ornithine decarboxyalse inhitors present in nature may offer great hope for finding new cancer chemporeventive agents.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Anti-proliferative and Apoptosis Inducing Effect of Momordin I on Oral Carcinoma (KB) Cells

  • Seo, Kyeong-Seong;Kim, Jeong-Hee;Kim, Yeo-Gab
    • International Journal of Oral Biology
    • /
    • 제32권3호
    • /
    • pp.113-118
    • /
    • 2007
  • Treatment of oral cancers with chemotherapeutic agents become evaluated as an effective method to reduce cancer cell proliferation. Anti-proliferative and anti-oral cancer activities of momordin I on oral cancer cells were evaluated in this study. Momordin I was originally purified from a natural product, Ampelopsis radix and showed the antiproliferative activity against oral carcinoma, KB cells. Obtained $IC_{50}$ value was approximately $10.4{\mu}g/ml$. Time-and dose-dependent chromosomal DNA fragmentations were observed in momordin I-treated KB cells. Flow cytometry analysis showed time-dependent apoptotic cell appearance after treatment of momordin I. Approximately 18.6% apoptotic cells were observed at 72 hours after $20{\mu}g/ml$ of momordin I treatment. These observation were consistent with the results obtained in DNA fragmentation analysis. These data suggest that momordin I has anti-proliferative effect and induces cell death in KB cells through apoptosis.

Molecular Mechanisms of Apoptosis and Roles in Cancer Development and Treatment

  • Goldar, Samira;Khaniani, Mahmoud Shekari;Derakhshan, Sima Mansoori;Baradaran, Behzad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2129-2144
    • /
    • 2015
  • Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.

구강암에 대한 약용식물 추출물의 항암효과에 관한 연구 (STUDIES ON ANTI-ORAL CANCER ACTIVITIES OF MEDICINAL PLANT EXTRACTS)

  • 이영훈;김여갑;김정희
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권1호
    • /
    • pp.53-58
    • /
    • 2000
  • Treatment of oral cancers with chemotherapeutic agents are evaluated as an effective method for remission to reduce cancer proliferation nowadays. But, minimization of side-effects such as bone marrow suppression, gastrointestinal toxicity and renal damage is another problem to be solved. Thus, a possible approach to develop a clinically applicable chemotherapeutic agents is to screen anticancer activity among traditional medicinal plants which have been used for thousands of years with very low side-effects in orient. In this study we focused on screening anti-oral cancer activities among 14 traditional medicinal plant extracts that revealed anticancer activities on other solid tumors. The results were as follow : 1. Methanol extract of Lepidium apetalum showed the highest anti-oral cancer activity against A253 cells. At concentration of $4{\mu}g/ml$, the cell viability was 48% under our experimental condition. $IC_{50}$ value obtained was $4{\mu}g/ml$. 2. Methanol extract of Coptis japonica and Solanum nigrum were effective on KB cells. Cell viability observed were 62% and 67% at concentration of $4{\mu}g/ml$, and $IC_{50}$ values were $12{\mu}g/ml$ and $10{\mu}g/ml$ respectively. 3. When the methanol extract of Lonicera caerule was combined with $2{\mu}g/ml$ of cisplatin, the anticancer activity was synergistically increased. One hundred ${\mu}g/ml$ of Lonicera caerule showed 92%(alone) or 59%(combined with cisplatin) cell viabilities. $IC_{50}$ value of Lonicera caerule extract against KB cells was reduced from $301{\mu}g/ml$ to $126{\mu}g/ml$ when combined with $2{\mu}g/ml$ of cisplatin. 4. Medicinal plant extracts effective on both A253 and KB cells were Coptis japonica, Lepidium apetalum, Solanum nigrum, Caesalpiniae Lignum, Curcuma aromatica.

  • PDF

Efficacy and Toxicity of Anti-VEGF Agents in Patients with Castration-Resistant Prostate Cancer: a Meta-analysis of Prospective Clinical Studies

  • Qi, Wei-Xiang;Fu, Shen;Zhang, Qing;Guo, Xiao-Mao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8177-8182
    • /
    • 2014
  • Background: Blocking angiogenesis by targeting vascular endothelial growth factor (VEGF) signaling pathway to inhibit tumor growth has proven to be successful in treating a variety of different metastatic tumor types, including kidney, colon, ovarian, and lung cancers, but its role in castration-resistant prostate cancer (CRPC) is still unknown. We here aimed to determine the efficacy and toxicities of anti-VEGF agents in patients with CRPC. Materials and Methods: The databases of PubMed, Web of Science and abstracts presented at the American Society of Clinical Oncology up to March 31, 2014 were searched for relevant articles. Pooled estimates of the objective response rate (ORR) and prostate-specific antigen (PSA) response rate (decline ${\geq}50%$) were calculated using the Comprehensive Meta-Analysis (version 2.2.064) software. Median weighted progression-free survival (PFS) and overall survival (OS) time for anti-VEGF monotherapy and anti-VEGF-based doublets were compared by two-sided Student's t test. Results: A total of 3,841 patients from 19 prospective studies (4 randomized controlled trials and 15 prospective nonrandomized cohort studies) were included for analysis. The pooled ORR was 12.4% with a higher response rate of 26.4% (95%CI, 13.6-44.9%) for anti-VEGF-based combinations vs. 6.7% (95%CI, 3.5-12.7%) for anti-VEGF alone (p=0.004). Similarly, the pooled PSA response rate was 32.4% with a higher PSA response rate of 52.8% (95%CI: 40.2-65.1%) for anti-VEGF-based combinations vs. 7.3% (95%CI, 3.6-14.2%) for anti-VEGF alone (p<0.001). Median PFS and OS were 6.9 and 22.1 months with weighted median PFS of 5.6 vs. 6.9 months (p<0.001) and weighted median OS of 13.1 vs. 22.1 months (p<0.001) for anti-VEGF monotherapy vs. anti-VEGF-based doublets. Conclusions: With available evidence, this pooled analysis indicates that anti-VEGF monotherapy has a modest effect in patients with CRPC, and clinical benefits gained from anti-VEGF-based doublets appear greater than anti-VEGF monotherapy.

Synergism of Cytotoxicity Effects of Triptolide and Artesunate Combination Treatment in Pancreatic Cancer Cell Lines

  • Liu, Yao;Cui, Yun-Fu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5243-5248
    • /
    • 2013
  • Background: Triptolide, extracted from the herb Tripteryglum wilfordii Hook.f that has long been used as a natural medicine in China, has attracted much interest for its anti-cancer effects against some kinds of tumours in recent years. Artesunate, extracted from the Chinese herb Artemisia annua, has proven to be effective and safe as an anti-malarial drug that possesses anticancer potential. The present study attempted to clarify if triptolide enhances artesunate-induced cytotoxicity in pancreatic cancer cell lines in vitro and in vivo. Methods: In vitro, to test synergic actions, cell viability and apoptosis were analyzed after treatment of pancreatic cancer cell lines with the two agents singly or in combination. The molecular mechanisms of apoptotic effects were also explored using qRT-PCR and Western blotting. In vivo, a tumor xenograft model was established in nude mice, for assessment of inhibitory effects of triptolide and artesunate. Results: We could show that the combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Conclusion: Our result indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications.