• 제목/요약/키워드: anthropomorphic robotics

검색결과 25건 처리시간 0.023초

7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘 (Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction)

  • 김영렬;송재복
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발 (Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping)

  • 양현대;박성우;박재한;배지훈;백문홍
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

Development of Anthropomorphic Robot Hand SKK Robot Hand I

  • Taehun Kang;Park, Hyoukryeol;Kim, Moonsang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.230-238
    • /
    • 2003
  • In this paper, a three-fingered anthropomorphic robot hand, called SKK Robot Hand 1, is presented. By employing a two-DOF joint mechanism, called Double Active Universal Joint (abbreviated as DAUJ from now on) as its metacarpal joint, the hand makes it possible to mimic humanlike motions. We begin with addressing the motivation of the design and mention how the anthropomorphic feature of a human is realized in the design of SKK Hand I Also, the mechanism of the hand is explained in detail, and advantages in its modular design are discussed. The proposed hand is developed for use as a testbed for dextrous manipulation. It is expected to resolve the increasing demand for robotic applications in unstructured environments. We describe its hardware construction as well as the controller structure including the preliminary results of experiments.

텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발 (Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes)

  • 김두형;신내호;오명호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II (Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II)

  • 최병준;이상헌;강성철;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

인간형 다지 다관절 로봇 핸드의 개발 (Design and Control of Anthropomorphic Robot hand)

  • 천주영;최병준;채한상;문형필;최혁렬
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.

Development of POSTEC HAND-V Index Finger Module

  • Lee, Ju-Hyoung;Youm, Youn-Gil;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2022-2026
    • /
    • 2003
  • We define that the end effector is the device which interact environment or objects with contact to execute tasks. Up to now, many researchers developed anthropomorphic robotic hands as end effectors. In this paper, we will discuss a problem on the development of a human-scale and motor-driven anthropomorphic robot hand. In this paper, design concept, actuator and transmission, kinematic design and sensing device are presented. By imitating the physiology of human hands, we devised new metacarpalphalangeal joint and interphalangeal joint suitable for human-size robot hands

  • PDF

인체형 로봇 매니퓰레이터의 동역학적 최적설계 (Dynamic optimal design of an anthropomorphic robot manipulator)

  • 이상헌;이병주;광윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.82-87
    • /
    • 1994
  • In this study, dynamic optimal design far a two degree-of-freedom anthropomorphic robot module is performed. Several dynamic design indices associated with the inertia matrix and the inertia power array are introduced. Analysis for the relationship between the dynamic parameters and the design indices shows that trade-offs exist between the isotropy and the dynamic design indices related to the actuator size. A composite design index is employed to deal with multi-criteria based design with different weighting factors, in a systematic manner. We demonstrate the fact that dynamic optimization is another significant step to enhance the system performances, followed by kinematic optimization.

  • PDF

Optimal design of finger phalanges

  • Choi, H.R.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.360-365
    • /
    • 1992
  • An optimal design method to determine the lengths of finger phalanges is proposed especially for anthropomorphic design. The quality of designs are quantified by several measures of global isotropy for design, Also, for an example, optimal design of two fingers is performed and the results are compared with the anatomical data.

  • PDF

인체의 근육구조에 대한 해석과 가변스프링 메커니즘 설계로의 적용 (Analysis on Human Musculoskeletal Structures with Application to Design of Adjustable Spring Mechanisms)

  • 이병주;이재훈;김희국
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.208-219
    • /
    • 1999
  • Springs have been employed in a wide range of mechanical systems. This work deals with the concept of an adaptable spring mechanism which can arbitrarily modulate its spring characteristics. The adaptable spring is desired for enhancing performances of various mechanical systems employing springs. We demonstrate that such adaptable springs can be realized by adapting anthropomorphic musculoskeletal structures of the human upper-extremity, which possesses highly nonlinear kinematic-coupling among redundant muscles existing in its structures. This phenomenon has been explained by several human arm models. Based on the analysis results, we propose multi-degree-of-freedom spring mechanisms resembling the musculoskeletal structure of the human upper-extremity, and verifiy the applicability of these mechanisms through simulation.

  • PDF