• 제목/요약/키워드: anthropomorphic robot

검색결과 40건 처리시간 0.031초

등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석 (Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra)

  • 김제석;지용관;박장현
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

로봇 디자인에서 의인화 기법의 활용 평가 방법에 관한 연구 (The Usage of Anthropomorphic Forms in Robot Design and the Method of Evaluation)

  • 최정건;김병석
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 2부
    • /
    • pp.126-130
    • /
    • 2008
  • 일상생활 용품에서 최근 지능형 서비스 로봇에 이르기까지 인간의 특성을 직간접적으로 제품 디자인에 활용한 사례를 주변에서 쉽게 찾을 수 있다. 특히 로봇 디자인의 경우는 의인화가 모든 디자인의 출발점이 되기 때문에 외형 디자인뿐만 아니라 사용자와의 인터랙션 디자인에 있어서도 의인화 기법의 활용이 필수적이다. 이러한 의인화 기법의 효과적인 활용을 위해 디자이너가 제품이 의인화된 정도를 측정하고 이를 바탕으로 의인화 기법의 활용도를 평가해야할 필요성이 생겨났다. 본 연구는 지능형 로봇의 디자인을 중심으로 한 의인화 기법 적용 사례 분석 및 의인화 정도를 측정하는 실험을 근거로 하여 의인화 기법의 활용 평가 기준을 수립하는 데 목표를 두었다. 이미지 카드를 활용한 로봇 외형의 의인화 정도 및 표정변화를 통한 로봇 인터랙션의 의인화 정도를 평가하는 실험을 통해서 의인화 기법의 활용도는 '형태의 의인화', '인터랙션의 의인화', '형태와 인터랙션의 의인화 조화 정도' 에 의해 평가할 수 있다는 결과를 얻었다. 본 평가 기준을 로봇 디자인 과정의 하나의 평가 방법으로 활용하면 로봇에 대한 사용자 호감도 증가 및 사용법이 복잡한 로봇 제품을 쉽고 직관적이게 접하게 만드는 효과를 기대할 수 있을 것이다.

  • PDF

Development of Anthropomorphic Robot Hand SKK Robot Hand I

  • Taehun Kang;Park, Hyoukryeol;Kim, Moonsang
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.230-238
    • /
    • 2003
  • In this paper, a three-fingered anthropomorphic robot hand, called SKK Robot Hand 1, is presented. By employing a two-DOF joint mechanism, called Double Active Universal Joint (abbreviated as DAUJ from now on) as its metacarpal joint, the hand makes it possible to mimic humanlike motions. We begin with addressing the motivation of the design and mention how the anthropomorphic feature of a human is realized in the design of SKK Hand I Also, the mechanism of the hand is explained in detail, and advantages in its modular design are discussed. The proposed hand is developed for use as a testbed for dextrous manipulation. It is expected to resolve the increasing demand for robotic applications in unstructured environments. We describe its hardware construction as well as the controller structure including the preliminary results of experiments.

안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발 (Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping)

  • 양현대;박성우;박재한;배지훈;백문홍
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발 (Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes)

  • 김두형;신내호;오명호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘 (Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction)

  • 김영렬;송재복
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

Development of POSTEC HAND-V Index Finger Module

  • Lee, Ju-Hyoung;Youm, Youn-Gil;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2022-2026
    • /
    • 2003
  • We define that the end effector is the device which interact environment or objects with contact to execute tasks. Up to now, many researchers developed anthropomorphic robotic hands as end effectors. In this paper, we will discuss a problem on the development of a human-scale and motor-driven anthropomorphic robot hand. In this paper, design concept, actuator and transmission, kinematic design and sensing device are presented. By imitating the physiology of human hands, we devised new metacarpalphalangeal joint and interphalangeal joint suitable for human-size robot hands

  • PDF

유연한 인간형 로봇 손의 설계 (Design of a Dexterous Anthropomorphic Robot Hand)

  • 지호준;이상헌;최병준;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.357-363
    • /
    • 2006
  • According to the study of grasping of the human hand, it is noted that the metacarpal link of the thumb plays the key role in power grasping. Also the face of fingertip can be discriminated into five parts depending on the grasping modalities such as pinch grasp, fingertip grasp and power grasp. In this paper, the design of the anthropomorphic robot hand which has a thumb and three fingers is proposed. A difference of SKKU hand II from the previous gripperlike robot hand is that the metacarpal bone is connected between the thumb and the palm. This thumb mechanism is specially designed to get the degree of freedom which can realize flexible motions relative to objects. Based on the analysis, the hand mechanism is developed. Since the driving circuits for the hand are embedded in the hand, only the communication lines supporting CAN protocol with DC power cable are necessary as the input. A new robot is manufactured and feasibility of the hand is validated through preliminary experiments.

인체형 로봇 매니퓰레이터의 동역학적 최적설계 (Dynamic optimal design of an anthropomorphic robot manipulator)

  • 이상헌;이병주;광윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.82-87
    • /
    • 1994
  • In this study, dynamic optimal design far a two degree-of-freedom anthropomorphic robot module is performed. Several dynamic design indices associated with the inertia matrix and the inertia power array are introduced. Analysis for the relationship between the dynamic parameters and the design indices shows that trade-offs exist between the isotropy and the dynamic design indices related to the actuator size. A composite design index is employed to deal with multi-criteria based design with different weighting factors, in a systematic manner. We demonstrate the fact that dynamic optimization is another significant step to enhance the system performances, followed by kinematic optimization.

  • PDF

촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II (Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II)

  • 최병준;이상헌;강성철;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.