• Title/Summary/Keyword: anthropogenic sources

Search Result 244, Processing Time 0.02 seconds

Survey of Antibiotic Resistant Bacteria in Lake Gyeongpo, Korea (경포호의 항생제 내성 세균 조사)

  • Dukki Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The emergence and spread of antibiotic-resistant bacteria have been increasing with anthropogenic contamination. Understanding the prevalence and distribution of these resistant bacteria in environments is crucial for effectively managing anthropogenic pollutants. Lake Gyeongpo in the Gangwon Province of South Korea is known for its diverse ecological features and human interactions. The lake is exposed to pollutants from nonpoint sources, including urban areas, agricultural practices, and recreational activities, which can introduce antibiotics and foster antibiotic resistance in bacteria. The present study investigates Lake Gyeongpo as a potential reservoir for antibiotic-resistant bacteria in a natural ecosystem. A total of 203 bacterial isolates were collected from six sampling locations in Lake Gyeongpo during May, July, and November 2022. Most isolates were taxonomically identified as Pseudoalteromonas, Bacillus, Shewanella, and Vibrio spp.; their abundance showed a spatiotemporal distribution. An antibiotic susceptibility test was conducted on 75 isolates using the disk diffusion method with six drugs according to the CLSI guideline; 42 isolates were resistant to one or more antibiotics. Among these, 15 isolates were identified as multidrug resistant bacteria. This finding suggests the potential anthropogenic impact on Lake Gyeongpo and provides valuable insights into the dissemination of antibiotic resistance caused by anthropogenic pollutants.

Sources Identification of Anthropogenic Pb in Ulleung Basin Sediments using Stable Pb Isotope Ratios, East/Japan Sea (동해 울릉분지 시추 퇴적물에서 안정 Pb 동위원소를 이용한 Pb의 기원 추정)

  • Choi, Man-Sik;Uoo, Jun-Sik;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.315-327
    • /
    • 2007
  • This study investigated temporal and spatial variation of Pb and stable Pb isotopes accumulated in Ulleung Basin core sediments (4) using MC ICP/MS in order to identify the sources of anthropogenic Pb in the East/Japan Sea. Leached (1M HCl) Pb concentration and isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were nearly constant during 300 yrs past than 1930, but increased up to twice in concentration and as much as 3.41% (1.70%) after 2000. On the other hand, residual Pb concentrations were nearly constant for past 400 yrs. The accumulation rates of anthropogenic Pb in the basin area were in the range of $3.1-3.5mg/m^2/yr$, which were similar levels to total atmospheric Pb deposition fluxes from 1990s to the present. In the slope area, more increase of anthropogenic Pb accumulation than the levels expected from mass accumulation rate could be found after the middle of 1990s. From the detailed evaluation for the temporal and spatial variation of accumulation rate and isotope ratios of anthropogenic Pb, we proposed probable sources and pathways of anthropogenic Pb. Pb emmision by coal burning from the China and Korea initiated the accumulation of anthropogenic Pb in the sediments of East/Japan Sea from 1930s. The accumulation of Pb increased by the addition of anti-nocking agents from both countries untill the beginning of 1990s, but from the middle of 1990s to the present, the phase-out of gasoline additives and the rapid increase of coal burning from the China maintained the atmospheric Pb levels in the Ulleung basin nearly similar to before. However, the local sources within this basin might take an important role in the rapid increase of anthropogenic Pb accumulation in slope areas from the middle of 1990s.

Landscape Analysis of the Effects of Artificial Lighting around Wetland Habitats on the Giant Water Bug Lethocerus deyrollei in Jeju Island

  • Choi, Ho;Kim, Heung-Tae;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.83-86
    • /
    • 2009
  • We conducted a landscape analysis to investigate the possibility of adverse effects of anthropogenic light sources, such as roads and residential buildings, on Lethocerus deyrollei on Jeju Island, Wetlands inhabited by L. deyrollei had fewer anthropogenic structures within a 3 km radius that had the potential to produce artificial light at night than wetlands not inhabited by L. deyrollei, In particular, the presence of artificial lights within a 1 km radius appears to reduce the probability of inhabitation by L. deyrollei, Our results suggest that artificial light sources may be critical determinants of L. deyrollei inhabitation patterns in a landscape, and that habitats that have a buffer area of at least 600$\sim$700 m radius free from residential buildings are the most appropriate habitats for L. deyrollei.

Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea (진해만 퇴적물의 퇴적속도와 중금속 오염)

  • Yang, Han-Soeb;kim, Seong-Soo;Kim, Gue-Buem
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.103-103
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28∼792 ㎍/cm2 and 0∼168㎍/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea (진해만 퇴적물의 퇴적속도와 중금속 오염)

  • Yang, Han-Soeb;kim, Seong-Soo;Kim, Gue-Buem
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.489-500
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28~792 $\mu\textrm{g}$/cm2 and 0~168$\mu\textrm{g}$/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

  • PDF

Estimation of Mercury Emission from Major Sources in Annex D of Minamata Convention and Future Trend (국내 비의도적 주요 배출원의 지역별 수은 대기 배출량 산정 및 미래 활동도 변화와 최적가용기술 적용 시 배출량 추이)

  • Sung, Jin-Ho;Oh, Joo-Sung;Back, Seung-Ki;Jeong, Bup-Mook;Jang, Ha-Na;Seo, Yong-Chil;Kim, Seong-Heon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.193-207
    • /
    • 2016
  • This study discusses the present status of mercury emission and distribution from major anthropogenic sources in Korea and the future trend of mercury emission by activity changes and application of BATs. Atmospheric mercury emission from major anthropogenic sources based on Annex D of Minamata convention was estimated to around 4.89 tonne in 2012. Emission ratios of cement clinker production, coal-fired power plant, waste incineration and non-ferrous metal smelting were 68.68%, 24.75%, 6.29% and 0.28%, respectively. High mercury emission regions were characterized by the presence of cement clinker production facilities and coal-fired power plants. Prediction of future activities was carried out by linear regression of the previous year data. The (total) mercury emission was estimated to decrease up to 48% Under the scenario of BATs to be applied and the change of future activities. Emissions from coal-fired powerplants and cement clinkers were expected to decrease significantly.

Water chemistry controlled by drainage basin: Case study in the Han River, South Korea

  • Ryu Jong-Sik;Lee Gwang-Sik;Sin Hyeong-Seon;An Gyu-Hong;Jang Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.405-407
    • /
    • 2005
  • To evaluate the main hydrogeochemical characteristics, river waters are investigated using element리 and isotopic compositions in South Korea. In this area, the chemical compositions are mostly classified into three groups; $Ca^{2+}-{HCO_3}^-$ type, $Ca^{2+}-Cl^{-}-{NO_3}^-$ type and $Ca^{2+}-{HCO_3}^{-}-Cl^{-}-{NO_3}^-$ type. These types are affected by two major factors: water-rock interaction and anthropogenic inputs such as sewage and fertilizers. Based on the values of ${\delta}^{18}O$ and ${\delta}D$, most of waters are originated from precipitation except two samples contaminated. The lithology and geography of basins mainly control the water chemistry. Elemental and isotopic compositions show that water chemistry are mainly controlled by three end members, especially by carbonate dissolution, and suggest that anthropogenic input affect the water chemistry. Also, three weathering sources are identified: silicates, dolomite and limestone.

  • PDF

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

Preliminary Source Apportionment of Ambient VOCs Measured in Seoul Metropolitan Area by Positive Matrix Factorization (PMF를 이용한 수도권지역 VOCs의 배출원 추정)

  • Han J. S.;Moon K. J.;Kim R. H.;Shin S. A.;Hong Y. D.;Jung I. R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.85-97
    • /
    • 2006
  • The PAMS data collected at four sites in Seoul metropolitan area in 2004 were analyzed using the positive matrix factorization (PMF) technique, in order to identify the possible sources and estimate their contributions to ambient VOCs. Ten sources were then resolved at Jeongdong, Bulgwang, Yangpyeong, and Seokmo, including vehicle exhaust, LPG vehicle, petroleum evaporation, coating, solvent, asphalt, LNG, Industry & heating, open burning, and biogenic source. The PMF analysis results showed that vehicle exhaust commonly contributed the largest portion of the predicted total VOCs mass concentration, more than $30\%$ at four sites. The contribution of other resolved sources were significantly different according to the characteristics of site location. In the case of Jeongdong and bulgwang located in urban area, various anthropogenic sources such as coating, solvent, asphalt, residual LPG, and petroleum evaporation contributed about $40\%$ of total VOCs mass. On the other hand, at yangpyeong and Seokmo located in rural and remote area, the portion of these anthropogenic sources was reduced to less than $30\%$ and the contribution of natural sources including open burning and biogenic source clearly observed. These results were considerably corresponding to the emission inventory investigated in this region.