• Title/Summary/Keyword: anthropogenic pollution

Search Result 186, Processing Time 0.021 seconds

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Variability of Pb, Mn, Al and Na Concentrations is Snow Deposited from Winter to Early Summer 1998 in Livingston lsland, Antarctic Peninsula

  • Sungmin Hong;Lee, Gangwoong;Velde, Katja-Van de;Claude F. Boutron
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.85-96
    • /
    • 2000
  • The concentrations of Pb, Mn, Al and Na were measured from a total of 26 snow samples collected from a 1.5-m deep snow pit in Livingston Island, South Shetland Islands, at the northern tip of the Antarctic Peninsula. Ore sampling location is great concern, because of its proximity to the southern extremity of south America, a candidate for the source regions of pollutant aerosols entering Antarctica. The mean concentrations of Pb and Mn were found to be 4.97 pg g(sup)-1 and 20.6 pgg(sup)-1, respectively. These concentrations levels are similar to those reported for recent snow at other Antarctic sites with pronounced spring maxima for both metals. Contributions form natural sources are estimated to be minor (∼16%) for Pb. For Mn, on the other hand, contribution from rock and soil dusts is found to be very important. Excess Pb over Pb from natural sources is likely to be anthropogenic, especially from South Americal. Our results show that yearly Pb fallout flux is much greater in Antarctic coastal areas than at other Antarctic locations far from the coast , indicating that the transport and deposition patterns of pollutant aerosols are not simple is Antarctica. It is also suggested that the recycling of anthropogenic Pb in seawater to the atmosphere could significantly contribute to the Pb fallout flux in the Antarctic coastal regions.

  • PDF

Retrieval of LIDAR Aerosol Parameter Using Sun/Sky Radiometer at Gangneung, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho;Lee, Kyu-Tae
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.175-185
    • /
    • 2017
  • The aerosol optical properties such as depolarization ratio (${\delta}$) and aerosol extinction-to-backscatter ratios (S, LIDAR ratio) and ${\AA}ngstr{\ddot{o}m$ exponent (${\AA}$) derived from measurement with AERONET sun/sky radiometer at Gangneung-Wonju National University (GWNU), Gangneung, Korea ($37.77^{\circ}N$, $128.87^{\circ}E$) during a winter season (December 2014 - February 2015) are presented. The PM concentration measurements are conducted simultaneously and used to identify the high-PM events. The observation period was divided into three cases according to the PM concentrations. We analysed the ${\delta}$, S, and ${\AA}$ during these high PM-events. These aerosol optical properties are calculated by the sun/sky radiometer data and used to classify a type of aerosols (e.g., dust, anthropogenic pollution). The higher values of ${\delta}$ with lower values of S and ${\AA}$ were measured for the dust particles. The mean values of ${\delta}$, S, and ${\AA}$ at 440-870 nm wavelength pair (${\AA}_{440-870}$) for the Asia dust were 0.19-0.24, 36-56 sr, and 0.48, respectively. The anthropogenic aerosol plumes are distinguished with the lower values of ${\delta}$ and higher values of ${\AA}$. The mean values of spectral ${\delta}$ and ${\AA}_{440-870}$ for this case varied 0.06-0.16 and 1.33-1.39, respectively. We found that aerosol columnar optical properties obtained from the sun/sky radiometer measurement are useful to identify the aerosol type. Moreover, the columnar aerosol optical properties calculated based on sun/sky radiometer measurements such as ${\delta}$, S, and ${\AA}$ will be further used for the validation of aerosol parameters obtained from LIDAR observation as well as for quantification of the air quality.

Radon and TSP Concentrations in the Ambient Air of Gosan Area, Jeiu Island between 2001 and 2004 (제주도 고산지역의 라돈 및 TSP 에어로졸 농도 특성: 2001~2004년 측정)

  • Kang, Chang-Hee;Ko, Hee-Jung;Zahorowski, Wlodek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.612-624
    • /
    • 2007
  • The real-time monitoring of radon ($^{222}Rn$) concentrations has been carried out to evaluate its ambient background concentration levels in Gosan site, Jeju Island between January 2001 and December 2004. In addition, the atmospheric TSP aerosols have been sampled, and their ionic and metallic components were analyzed to understand the characteristics of air pollution. The mean concentration of radon was $3,121{\pm}1,627\;mBq/m^3$, and the seasonal mean concentrations for spring, summer, fall and winter seasons were 2,898, 2,398, 3,571 and $3,646\;mBq/m^3$, respectively, The hourly concentrations have shown the highest value at 7 a.m. and the lowest value at 2 p.m. From the backward trajectory analyses, the radon concentrations have increased, when the air parcels were moved from the Chinese continent to Jeju area. On the other hand, they have decreased, when the air parcels from the North Pacific Ocean. In the analytical results of ionic species and metal elements of TSP aerosols, the concentrations of $nss-{SO_4}^{2-}$ and S were higher in June and March. Meanwhile, the concentrations of other anthropogenic species as well as soil components were mostly higher in March and April. On the basis of factor analysis, the TSP aerosols at Gosan area were largely influenced by soil sources, followed by anthropogenic sources and marine sources. From the result of backward trajectory analyses, the concentrations of $nss-{SO_4}^{2-},\;{NO_3}^-$, Al and Ca were mostly higher, when the air parcels moved from Chinese continent to Jeju area. On the other hand, their concentrations were lower, when the air parcels drifted from the North Pacific Ocean.

Studies on Pollution Characteristics and Sources of Precipitation in Jeiu Island

  • Kang, Chang-Hee;Kim, Won-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.191-201
    • /
    • 2002
  • The pH, electric conductivity. and the major ionic components were analyzed for the precipitation samples collected at 1100 Site of Mt. Halla and Jeju city. The quality of analytical data was verified by the comparison of ion balances, conductivities and acid fractions, all of which correlation coefficients were over 0.952. The ionic strengths lower than 10$^{-4}$ M were found in 57 and 28% at 1100 Site and Jeju city respectively. The precipitation in Jeju city was influenced more by the oceanic effect than those in 1100 Site. The acidification of precipitation was caused mostly by S $O_4$$^{2-}$and N $O_3$$^{[-10]}$ in both areas, and the organic acids have contributed to the acidity with only 7~8%. The neutralization factors by N $H_3$ were about 44 and 47% at the 1100 site and the Jeju city, respectively, whereas those by CaC $O_3$were 21 and 24%, and the free acidity were about 38 and 28% at two sites. From the investigation of seawater and soil enrichment factors, the S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and N $E_4$$^{+}$ were immigrated by other sources rather than from the seawater or soil origins. but not in the case of $Mg^{2+}$, C $l^{[-10]}$ , N $a^{+}$, and $K^{+}$. Factor analysis has shown that the precipitation at the 1100 site had been influenced mostly by anthropogenic sources, followed by soil and sea-water sources. On the other hand, the precipitation at the Jeju city was mainly influenced by oceanic sources, followed by anthropogenic and soil sources.urces.

Characteristics of Groundwater Quality in Sasang Industrial Area, Busan Metropolitan City (부산시 사상공단지역의 지하수 수질 특성)

  • Hamm, Se-Yeong;Kim, Kwang-Sung;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Sung, Ig-Hwan;Jang, Seong
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.753-770
    • /
    • 2006
  • In urban areas, groundwater pollution is heavily affected by urbanization with land use types. This study aims to characterize groundwater quality and contamination in Sasang industrial area of Busan Metropolitan City where metalworking, machinery and footwear factories are located. Busan Metropolitan City is the highest in the utilization of groundwater resources among the metropolitan cities in Korea. $K^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;Cl^-,\;SO_4^{2-}\;and\;HCO_3^-$ concentrations, and electrical conductivity (EC), total dissolved solids (TDS) and salinity are high in the areas near the Nakdong River. The results are attributed to the influence of salt water which intruded into the coastal sediments during sedimentation. In addition, the dominant chemical type of Ca-Cl indicates the influence of salt water in the geological formations as well as anthropogenic pollution. $SiO_2$ ion is interpreted to originate from both water-silicate mineral reactions and the decomposition of cement concretes. Trichloroethylene (TCE) was detected at 12 sites of total 18 sites. However, tetrachloroethylene (PCE) was detected at f sites and 1.1.1-trichloroethane (TCA) at 3 sites. According to the factor analysis, factor 1 was explained by 49.8%, factor 2 19.8%, and factor 3 11.0% with total 80.6% explanation. pH, TDS, salinity, $Ca^{2+},\;K^+,\;Mg^{2+},\;Na^+,\;Al^{3+},\;As^{3+},\;Cl^-\;and\;Fe^{2+}$ were positively highly loaded to factor 1. The chemical components loaded to factor 1 represent the chemical characteristics of both industrial pollution and influence by salt water. Based on the cluster analysis and distribution pattern of chemical components, the concentration of $Na^+,\;Ca^{2+},\;Cl^-,\;SO_4^{2-}\;K^+,\;and\;Mg^{2+}$ is high in the riverside area of the Nakdong River composed of coastal sediments that is influenced by salt water. The downstream area of the Hakjang Stream is judged to be affected by both salt water and artificial pollution. The other part of the study area is interpreted by anthropogenic pollution.

Trace element Analysis and Source Assessment of Apartment Parking Lot Dust in Daegu, Korea (공동주택 주차장의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Bae, Gun-Ho;Jung, Cheol-Su;Park, Kyu-Tae;Lee, Myoung-Sook;Shin, Dong-Chan;Kim, Yong-Hye;Yoon, Min-Hye;Han, Young-Jin;Choi, Hyuek;Baek, Sung-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.756-766
    • /
    • 2011
  • In order to investigate the degree of apartment parking lot dust contamination, total 72 samples of parking lot dust (36 from ground parking lots and 36 from the underground parking lots) were collected in Daegu city from the end of March to the early June 2010. The dust samples were sieved below $100{\mu}m$, and analysed by ICP for 14 elements after an acid extraction. Results obtained from the source assessment of trace element using enrichment factor showed that Fe, K, Mg, Mn, Na and V were influenced by natural sources, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources in both the ground parking lot and the underground parking lot. And results showed that Ca were influenced by natural sources in the ground parking lot, but influenced by anthropogenic sources in the underground parking lot. The measured values were remarkably higher in components from natural sources than in components from anthropogenic sources. Underground parking lot dust was more affected by anthropogenic sources and contaminated compared with the ground parking lot dust. Pollution index of heavy metals revealed that underground parking lot dust was 5.5 times more contaminated with heavy metal components than the ground parking lot dust. The results of correlation analysis among trace elements indicated that components in the ground parking lot were more correlated than those in the underground parking lot, and especially more correlated with natural sources-natural sources. Analysis for correlations between components and influencing factors in the underground parking lot showed that concentrations of heavy metals were higher with smaller number of parking spaces and no ventilation system, and older apartments in last paint and cleaning had relatively higher contents of heavy metals than those of recently painted and cleaned.

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

Pollution of Heavy Metals and Sedimentation Rate in the Sediments of Suyeong Bay, Pusan (수영만 퇴적물의 퇴적속도와 중금속 오염)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.643-658
    • /
    • 1994
  • The sedimentary records of anthropogenic metal loads in the Suyeong Bay, Pusan were determined by combining the Pb-210 dating technique with the measurements of heavy metals in the sediment cores. The sedimentation rates of sediment particles ranged from $0.12\;to\;0.20\;g/m^2/yr\;or\;2.4{\sim}4.0\;mm/yr$ in accumulation rates. The lowest sedimentation rate was observed at station S3 which was characterized by a bottom with relatively low organic matter contents(e.g. TIL and TOC). Heavy metals showed generally higher concentrations at station S1 and S2 near the mouth of the Suyeong River than at station S3 and the outmost station S4. The contents of copper, lead and zinc in the sediment cores especially from station S1 and S2 began to increase around 1930, and were at their highest levels in the $1960{\sim}1970$ period as a result of increasing industrial activities. Concentrations of these heavy metals have slightly decreased since 1970, probably due to regulation of pollution discharge. The natural background levels of copper, lead and zinc in the sediments of this bay ranged $18{\pm}4ppm,\;28{\pm}6ppm\;and\;74{\pm}9ppm$, respectively, by averaging the contents in the sediment depths corresponding to periods between about 1900 and 1920 at the four stations. The total amounts of anthropogenic loads deposited in the sediments since about 1930 were estimated to be $9{\sim}291{mu}g/cm^2$ for lead, $165{\sim}1122{mu}g/cm^2$ for zinc and $20{\sim}208{mu}g/cm^2$ for copper. These values were remarkably high at stations S1 and S2 relative to the other two stations. At stations S1 and S2, the anthropogenic loads of lead, copper and zinc constituted $29{\sim}30\%,\;32{\sim}42\%\;and\;28{\sim}35\%$ of the total sedimentary inventories at the present day, respectively. These metal contents have a good correlation(r>0.7) with each other and cadmium measurements also show a positive linear relation with nickel or total organic nitrogen.

  • PDF

Study on the Yellow Sandy Dust Phenomena in Korean Peninsula and Chemical Compositions in Fine Particles at Background Sites of Korea. (한반도의 황사 관측현황 및 배경지역 미세먼지의 화학적 조성에 관한 연구)

  • Baek Kwang-Wook;Chung Jin-Do
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.9-18
    • /
    • 2004
  • In this study, the observation data for the yellow sandy dust phenomena from the year 1999 to 2003 at background sites in Korea were collected at Global Atmospheric Observatory at An-Myeon island and its temporal variation were analyzed. The chemical characteristics of the fine particles were also analyzed in order to evaluate sources of the yellow sandy dust particles. The results showed that the monthly average mass concentration of the fine particles was the highest in springtime and the lowest in summertime in general. The magnitude of its variation was also the highest in March in which the occurrence of yellow sandy dust was the most frequent and thus the number of samples was the largest, while the lowest in June through September. The yearly variation of ion components contributions to the total mass concentration of the fine particles was slowly decreasing, showing that $63\%$ in 1999, $59\%$ in 2000 and $56\%$ in 2003. The most prevalent ion components in the fine particles were found to be $NO_3$ and $SO_4^{2-}$, which are known to be source materials of acidic precipitation, and $NH_4^+$, a neutralizing material of the acid precipitation. Relative proportion of metal components in the fine particles was calculated as $14\%$ in average, and their concentrations are in an order of Fe > Al > Na > Ca > Zn > Pb > Cu > Mn > Ni > Cd > Cr > Co > U. The results indicated that main sources of the metals was soil-originated Fe, Al, Ca, and Mg, and the contribution of anthropogenic air Pollution-originated Zn, Pb, Cu, Mn were also high and keep slightly increasing. Statistical analysis showed that the chemical components could be divided into soil-originated group of Mg, Al, Ca, Fe, and Mn and air pollution-originated group of $NO_3$, Zn, Pb, and they are occupying more than $60\%$of all the components in the dusty sand. The results explain that An-Myeon island is more influenced by soil-originated source than ocean-originated one and also the influencing strength of anthropogenic poilution-originated source is less than $50\%$ of that of soil-originated sources. Compared to non-yellow sandy period, the yellow sandy dust period showed that the amounts of soil-originated $Mg^{2+}$ and $Ca^{2+}$ and ocean-originated $Na^+$ and $Cl^-$ were increased to more than double and the metals of Mg, Al, Ca, Fe were also highly increased, while micro metal components such as Pb, Cd, Zn, which have a tendency of concentrating in air, were either decreased or maintained at nearly constant level. In the period of yellow sandy dust, a strong positive correlation was observed between water soluble ions and between metals in terms of its concentration, respectively. Factor analysis showed that the first group being comprised of about $43\%$ of the total inorganic components was affected by soil and they are ions of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ and metals of Na, Fe, Mn and Ni. The result also showed that the metals of Mg and Cr were classified as second group and they were also highly affected by soil sources.