• Title/Summary/Keyword: antenna structure

Search Result 1,175, Processing Time 0.029 seconds

Miniaturized meander-line dual-band implantable antenna for biotelemetry applications

  • Rajagopal Kangeyan;Madurakavi Karthikeyan
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.413-420
    • /
    • 2024
  • A dual-band bio-implantable compact antenna with a meander-line structure is presented. The proposed meander-line antenna resonates at the industrial, scientific, and medical (2.4 GHz) and wireless medical telemetry (1.4 GHz) bands. The meander-line structure is selected as a radiating patch given its versatile and effective design. With a dimension of only 10 mm × 10 mm × 0.635 mm, the designed antenna is compact. Considering a skin phantom, the proposed antenna was designed, optimized, and simulated. The Rogers RT/duroid 6010 substrate material with high dielectric constant was used to fabricate the meander-line dual-band implantable antenna, which was validated experimentally. The superstrate was made of the same material. Experiments were conducted on skin-mimicking gel. The designed meander-line antenna has a high peak gain of -21 dBi at 2.4 GHz, and its maximum specific absorption rate is compliant with IEEE safety standards.

Optimized Design of a Tag Antenna for RFID using a Meander Line (미앤더 라인을 이용한 RFID 태그 안테나 최적 설계)

  • Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2293-2298
    • /
    • 2011
  • In this paper, A tag antenna structure for RFID application with resonant frequency of 920MHz is proposed using the meander line technique and Evolution Strategy. Miniaturization structure design for a tag antenna is performed by structure combining the half-wave dipole with a meander line. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is made for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The optimized tag antenna size is 63mm ${\times}$ 15mm ${\times}$ 1mm. And the proposed antenna is realized on FR-4 substrate (${\epsilon}_r=4.4$, $tna{\delta}=0.02$).

An Inset-Fed Microstrip Patch Antenna Having Modified Feeding Structure in the S-Band (급전구조를 변형한 5-Band용 INSET-FED 마이크로스트립 패치 안테나)

  • 정동근;이석문;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.897-903
    • /
    • 2002
  • In this paper, a modified feeding structure for microstrip patch antenna is suggested for improving the performances. The proposed antenna has a gap between the transmission line and the recessed part of the radiating patch which makes a capacitive coupling. It shows higher 511(-l4dB) and lower cross polarization level(-2OdB) compare with the conventional inset ftd patch antenna while having a similar characteristics in another evaluating items. Experimental results are examined and considered to apply to the S-Band application, and the effectiveness has been confirmed by FDTD simulation and measurement simultaneously.

Small and Wideband Microstrip Antenna with Eccentric Radiating Structure and Low Impedance Feeding Structure (비동심원 복사구조와 저 임피던스 급전구조를 갖는 소형 광대역 마이크로스트립 안테나)

  • Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1940-1945
    • /
    • 2006
  • The small and wideband annular ring slot antenna with eccentric radiating structure and low impedance feedline is presented. This antenna is analyzed by using substrate with permittivity 4.3 and thickness 1mm. As the measured impedance bandwidth of proposed antenna is $118%(S_{11}{\leq}-10dB)$, its bandwidth is much broader than that of conventional annular ring slot antenna.

Comparison of the Radiation Characteristic of a Microstrip Patch Antenna integrated with a UC-EBG Structure and a Mushroom EBG Structure (UC-EBG 구조와 Mushroom EBG 구조가 집적된 마이크로스트립 패치 안테나의 방사 특성 비교)

  • Kim, Tae-Young;Kim, Boo-Gyoun;Shin, Jong-Dug
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.233-234
    • /
    • 2008
  • Radiation characteristics of a microstrip patch antenna integrated with a UC-EBG (Uniplanar Compact Electromagnetic Bandgap) structure and a Mushroom EBG structure are compared. Radiation characteristics of a patch antenna integrated with a Mushroom EBG structure are better than those of a patch antenna integrated with a UC-EBG structure.

  • PDF

Parallel-fed Multiple Loop Antenna for 13.56MHz RFID Reader

  • Yang Woon Geun;Park Yong Ju;Kim Hyuck Jin;Cho Jung Min;Kim Jung Ho
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.334-338
    • /
    • 2004
  • In this paper, we suggest a new antenna structure for RFID(Radio Frequency IDentification) reader. Conventional RFID reader uses a loop antenna. The central area of a loop antenna shows a low magnetic field strength especially for the case of a large loop antenna diameter. We propose a parallel-fed multiple loop antenna. Simulation results and measured results show that we can adjust field distribution with the number of turns and diameter of an inner loop antenna to obtain a longer reading distance. Simulation results for the specific case of a proposed antenna structure show that at the center point of a proposed parallel-fed multiple loop antenna, the typical card area averaged magnetic field strength is 2.53A/m, which is higher than the case of a conventional type single loop antenna of 0.44A/m and the case of a series-fed multiple loop antenna of 0.96A/m when we drive with same source signal. We realized the antenna for the case of 13.56MHz RFID reader and the performance of reading distance was much more improved than the case of a conventional antenna.

  • PDF

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Design of High-gain Antenna for Satellite Communication with Miniaturized Feed Structure (소형화된 급전부를 갖는 위성통신용 고이득 안테나 설계)

  • Park, Joongki;Park, Do-hyun;Lee, Ho-sub;Heo, Jong-wan;Kwon, Gun-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1471-1476
    • /
    • 2018
  • In this paper, a high-gain antenna for satellite communication is proposed. The proposed antenna consists of septum polarizer, circular waveguide, Hat-feed structure that has a high-gain and efficiency. Especially, it is smaller and lighter than the conventional satellite communication antennas by applying a hat-feed structure. The measured results show that received gain of proposed antenna is better than 29.9 dBi and transmitted gain of proposed antenna is better than 30.5 dBi. The co-polarized and cross-polarized radiation patterns comply with ITU-RR Ap.8 and ITU-R S.731-1 that are recommended by International Telecommunication Union. The designed high-gain antenna for satellite communication is expected to be used for OTM and airborne satellite systems.

A Broadband Monopole Antenna with Ring Loop By Modified Ground Plane (접지면 변형에 의한 원형 루프를 갖은 광대역 모노폴 안테나)

  • Lee, Hyeon-Jin;Lim, Yong-Moo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.149-152
    • /
    • 2012
  • In this paper, a wideband monopole antenna with ring loop by modified ground plane is presented. The proposed antenna consist of monopole antenna, ring loop by ground plane. This antenna is fed CPW-fed and wide slot antenna of a novel structure for broadband characteristics is proposed. To enhance the impedance bandwidth of the wide slot antenna, we proposed the wide slot structure with CPW-fed which is combined with four ${\lambda}/2$ rectangular radiation modified monopole and inductively coupled. The measured impedance bandwidth is about 2.5 GHz(3.65~6.15 GHz) then less -10 dB.

The Design of microstrip line-probe feeding patch array antenna (마이크로스트립 라인-프로브 급전 패치 배열 안테나의 설계)

  • 박종렬;이윤경;윤현보
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.285-289
    • /
    • 2002
  • In this paper, microstrip line-probe feeding patch array antenna with center frequency 5.8㎓ is designed and manufactured. The microstrip line - probe feeding structure has broadband characteristic and be able to modify the array structure for improving antenna gain. In this result, microstrip line-probe feeding patch array antenna has 17.6% bandwidth and 8㏈i antenna gain, respectively.

  • PDF