• Title/Summary/Keyword: antenna optics

Search Result 49, Processing Time 0.024 seconds

GAIN DEGRADATION OF KVN 21-M SHAPED CASSEGRAIN ANTENNA DUE TO MISALIGNMENT OF ANTENNA OPTICS

  • Chung Moon-Hee;Byun, Do-Young;Khaikin Vladimir B.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.327-336
    • /
    • 2006
  • In this paper, gain loss of KVN (Korean VLBI Network) 21-m shaped Cassegrain antenna due to misalignment of antenna optics is calculated using ray-tracing method. It enables us to estimate alignment tolerances of feed and sub-reflector positioning. According to numerical results, KVN 21-m shaped Cassegrain antenna's gain loss is more sensitive to positions of feed and sub-reflector than in case of the equivalent classical Cassegrain antenna. The result of calculation is believed to be utilized as a possible guideline when checking the performance of the antenna system.

Analysis of KVN 21m Radio Antenna Optics using Ray-Tracing Method (광선추적방법을 이용한 KVN 21m 전파망원경 광학계의 해석)

  • Bae, Jae-Han;Byun, Do-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.187-198
    • /
    • 2009
  • In this work, we calculate drop in antenna gain, aperture phase distribution, and antenna pointing shift of KVN(Korean VLBI Network) 21m shaped Cassegrain antenna due to misalignments of antenna optics using ray-tracing method. The misalignments we considered are axial displacement of feed, axial displacement of sub-reflector, lateral displacement of feed, lateral displacement of sub-reflector, and sub-reflector tilt. Calculations are performed not only when these misalignments exist separately, but also when they exist at the same time. Although ray-tracing method is based on geometric optics which does not consider electromagnetic effects, we expect that this work enables us to align antenna optics which give the maximum gain.

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.

A Study on the Electrical Design of a Multi-Beam Large Antenna for S-band Satellite Payload (S-대역 위성 탑재용 다중 빔 대형 안테나의 전기적 설계 연구)

  • Yun, So-Heyun;Uhm, Man-Suk;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1240-1247
    • /
    • 2010
  • This paper describes the study on the electrical design of a multi-beam large antenna for a satellite payload. This satellite antenna provides the universal communication and broadcasting services to personal portable terminals over the Korean Peninsula. The structure of the hybrid antenna fed by a feed array is proper to provide multi-beams. The amplitude and phase of each feed element should be optimized for a required beam and they can be obtained by GO (Geometrical Optics) and PO(Physical Optics) method. The number of feed elements are also optimized to meet the specification of EIRP(Effective Isotropically Radiated Power). The optimally designed antenna with the limited reflector size and minimum number of feed elements is shown in this paper.

Optimum Design of Multi-beam Large Reflector Antenna for Satellite Payload (위성 탑재용 다중빔 대형 반사판 안테나의 최적 설계)

  • Yun, So-Hyeun;Uhm, Man-Seok;Yom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.45-49
    • /
    • 2010
  • This paper presents the study on multi-beam large aperture antenna systems for a satellite payload. Multi-beam large antenna provides the universal communication and broadcasting services to personal portable terminals. The hybrid antenna composed of a large reflector and a feed array forms multi-beams. The feed cluster consists of a group of feed elements and each element should be optimized for the appropriate amplitude and phase. The optimization progress for amplitude and phase was performed by GO (Geometrical Optics) and PO (Physical Optics) method. The number of feed elements as well as the power level per element were also optimized to meet the required EIRP (Effective Isotropically Radiated Power). In conclusion, 30m-class reflector and twenty five elements for fifteen beams over Korean Peninsula were designed through the optimization process.

Fresnel Zone Plate Antenna Analysis using PO Method (PO법을 이용한 프레넬 존 플레이트 안테나 해석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.74-76
    • /
    • 2012
  • In order to design Transceiver/Receiver antenna with high gain in Ka band, Fresnel zone plate lend(FZPL) antenna is considered and analyzed. Physical optics is applied to demonstrate the FZPL. The FZPL is configured to 11 elements diffraction zones and drived at 20GHz. As a result, calculated received gain using PO method is 33.01dB.

  • PDF

Analysis of the Radiation Patterns for a Millimeter Wave Corrugated Horn Antenna by Vector Integral Method and Quasi-Optics (벡터 적분법과 준 광학모드에 의한 밀리미터파용 컬러게이트 혼 안테나의 복사패턴 해석)

  • Son-Tae Ho
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.2
    • /
    • pp.20-28
    • /
    • 1994
  • Theoretical radiation patterns for the corrugated horn antenna are analyzed by vector integral method and quasi-optics. The formular of the radiated fields for the corrugated horn antenna can be obtained by the potentials derived the equivalent current sources from hybrid fields at horn aperture and also calculated by the expanded mode set of Gaussian - Laguerre based on the quasi - optics. From comparison of the radiation patterns between two methods for a corrugated horn antenna designed on 85-115 GHz frequency range, the results are coincided well at center frequency but have some errors at each side frequencies 85 and 115 GHz.

  • PDF

A Study of the field distribution in focal plane for the shape deformations of Satellite antenna (위성 반사경 안테나 변형으로 인한 초점영역의 전자장 분포에 관한 연구)

  • Yi Sang-Hoi
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.36-47
    • /
    • 1995
  • The main purpose of this paper is to determine a new focal point and field distribution due to the shape deformation of reflector antenna by numerical method such as geometrical optics and the aperture field method. It is shown the 4 types deformations to be added into original shape of parabola antenna and offset antenna: linear, quadratic, cubic and hybrid distortion. These results can be applied to deformed reflector antenna in order to fit a focal point and radiation pattern.

  • PDF

Prediction of Electromagnetic Wave Propagation in Space Environments Based on Geometrical Optics

  • Kim, Changseong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.165-167
    • /
    • 2017
  • We predict the electromagnetic wave propagation in space environments using geometrical optics. The effective indices of the troposphere, stratosphere, and ionosphere are computed, and the reflection, refraction, and attenuation of electromagnetic waves in space environments are calculated based on the ray tracing technique and geometrical optics. The influence of the refractive index and loss of atmosphere and the incident angle of the antenna on electromagnetic wave propagation is discussed.

Planar near-field antenna measurement method based on symplectic relation and reaction concept

  • Cho, Yong-Heui
    • International Journal of Contents
    • /
    • v.6 no.2
    • /
    • pp.6-9
    • /
    • 2010
  • Using symplectic relation and reaction concept, we propose a planar near-field antenna measurement method. A generalized probe compensation equation is deduced to obtain the probe correction formulation. To verify our approach, a reflector antenna with $1{\times}2$ horn array is fabricated and measured in the near-field measurement facility. The near-field measurement results are compared with the physical optics (PO) simulation. The results of measurement and simulation agree very well near to the mainbeam.