• Title/Summary/Keyword: antenna measurement

Search Result 746, Processing Time 0.024 seconds

Auto-compatibility Analysis for Ka-band payload of COMS

  • Park, Jae-Woo;Lee, Seong-Pal;Baek, Myung-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.41-47
    • /
    • 2007
  • The first geostationary satellite made by Korea, COMS, has the three different payload ; Meteorological sensor, Oceanographic sensor and Ka-band communication payload. There are Meteorological & Ocean Data Communication Subsystem(MODCS) and Telemetry, Command and Ranging Subsystem(TC&R) as other RF radiation sources. MODCS transmits and receives Meteo and Ocean measurement data from/to earth using L-band and TC&R using S-band. The Ka-band communication payload will provide high-speed multimedia services and communication services for natural disaster such as prediction, prevention, and recovery services in the government communications network.Ka-band beacon is for the earth antenna pointing and the experiment of rain fading. This paper gives the analysis results about the mutual radiation effect on Ka-band communication payload, Ka-band beacon, MODCS and TC&R. Up/Down link power and coupling factor including the geometrical position and distance of antenna, filter rejection and degradation factor due to the different polarization are considered. The results show MODCS and TC&R are compatible for Ka-band communication payload and Ka-band beacon does not interfere with MODCS and TC&R normal operation.

  • PDF

Characterization of Electrical Crosstalk in 1.25 Gbps Optoelectrical Triplex Transceiver Module for Ethernet Passive Optical Networks (이더넷 광 네트워크 구현을 위한 1.25 Gbps 광전 트라이플렉스 트랜시버 모듈의 전기적 혼신의 분석)

  • Kim Sung-Il;Lee Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-34
    • /
    • 2005
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a triplex transceiver module for ethernet Passive optical networks(EPONS). And we improved the electrical crosstalk levels using Dummy ground lines with signal lines. The triplex transceiver module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and a analog photodetector as a community antenna television signal receiver. And there are integrated on silicon substrate. The digital receiver and analog receiver sensitivity have to meet -24 dBm at $BER=10^{-l2}$ and -7.7 dBm at 44 dB SNR. And the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the Dummy ground line with $100\;{\mu}m$ space from signal lines and separates 4 mm among devices respectively, is satisfied the electrical crosstalk level compared to simple structure. This proposed structure can be easily implemented with design convenience and greatly reduced the silicon substrate size about $50\%$.

Analysis of Acoustic Reflectors for SAW Temperature Sensor and Wireless Measurement of Temperature (SAW 온도센서용 음향 반사판 분석 및 무선 온도 측정)

  • Kim, Ki-Bok;Kim, Seong-Hoon;Jeong, Jae-Kee;Shin, Beom-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • In this study, a wireless and non-power SAW (surface acoustic wave) temperature sensor was developed. The single inter-digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on $128^{\circ}$ rot-X $LiNbO_3$ piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to $80^{\circ}C$ and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99.

Development of Microwave Water Surface Current Meter for General Use to Increase Efficiency of Measurements of River Discharges (하천유량측정의 효율성 향상을 위한 범용 전자파표면유속계 개발)

  • Kim, Youngsung;Noh, Joonwoo;Choi, Kwangsoon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • Discharge measurement during flood season is very difficult. Microwave water surface current meter (MWSCM) can measures river surface velocities easily without contacting water. This study introduces its improved version, MWSCM for general use. The existing version of MWSCM is for floods so that its applicable period in a year is short. It has been improved to extend its applicability in a year. The range of measurable velocity for MWSCM for general use is extended so it can be applied during normal flows as well as high flows. MWSCM for general use can measure the velocity range of $0.03{\sim}20.0ms^{-1}$, whereas MWSCM for floods can measure the velocity range of $0.5{\sim}10.0ms^{-1}$. To make such innovation of MWSCM for general use, the applied microwave frequency of MWSCM was changed from 10 GHz to 24 GHz. Waveguide slot array antenna has been designed with the new development of the circuit of transmitting and receiving part. Improvement requests on the existing MWSCM for floods - weight lightening, measured velocity stabilization, self-test, low power consumption, and waterproof and dampproof - from the users of it have been reflected for the development of the new version of MWSCM.

Adult Morphological Measurements: An Indicator to Identify Sexes of Japanese Pine (솔수염하늘소(Monochamus alternatus) 성충의 형태 측정과 암수 구분)

  • 이상명;정영진;김동수;최광식;김영걸;박정규
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.85-89
    • /
    • 2004
  • Numerical measurements were made for fresh weight, body length and width, head width, and color and length of antenna of Japanese pine sawyer, Monochamus alternatus adults, a primary vector of pine wood nematode, Bursaphelenchus xylophilus in Korea. We measured 563 females and 601 males that emerged out of dead pine logs from 2001 to 2002. General linear model analysis showed that measurements of fresh weight, body length, and body width were significantly higher in females than in males. Head width was not significantly different between sexes. Antennal length of males was significantly longer than that of females. For females and males respectively, average fresh weights were 0.305g and 0.277g, body lengths 20.97mm and 19.93mm, body widths 6.52mm and 6.18mm, head widths 3.78mm and 3.70mm, and antennal lengths 31.19mm and 45.49 mm. Antennal length or ratio of antennal length to body length overlapped in some ranges between 2 sexes. Therefore antennal length itself or ratio of antennal length to body length could not be used as a definite criterion to discriminate sexes. However, check on color of the antennae of 4,033 adults revealed without exception that basal part of every segment of flagellum of female antenna was covered with whitish-grey hairs, while whole part of every segment of male flagellum was covered with brownish-black hairs. This characteristics might be a best way to differentiate sex of this species.

The Study on Empirical Propagation Path Loss Model in the Antler Terminal Environment (엔틀러 터미널 환경에서 실험적인 패스 로스 모델에 관한 연구)

  • Kim, Kyung-Tae;Kim, Jin-Wook;Jo, Yun-Hyun;Kim, Sang-Uk;Yoon, In-Seop;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.516-523
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) with the terminal with two antlers. We measured two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at passager terminal areas were 3.32 and 3.10 respectively in 128.2 MHz and 269.1 MHz. The deviation of prediction error is 9.69 and 9.65. The new path loss equation at the terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Equivalent Circuit Modeling of Aperture-Coupled Microstrip-to-Vertically Mounted Slotline Coupler (개구면을 통한 마이크로스트립-수직 슬롯 라인 결합 구조의 회로망 해석과 모델링)

  • Nam, Sang-Ho;Kim, Jeoung-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.357-365
    • /
    • 2009
  • A general analysis of a microstrip-to-vertically mounted slotline(VMS) coupler is presented with a view to developing an equivalent circuit, and the efficient evaluation of the related circuit element values. Based on this theory, the effects of frequency and structure parameters such as aperture length and VMS width on the characteristics of the coupler are studied. In order to check the validity of the proposed analysis and design theory, a C-band linearly tapered slot antenna fed by an aperture-coupled back-to-back microstripline-to- VMS coupling structure is optimally designed using a hybrid genetic algorithm. Moreover, the computed characteristics from the network analysis is compared to the measurement and simulation results. The obtained results fully validate the efficiency and accuracy of the proposed network model.

Cooperative Communication Scheme Based on channel Characteristic for Underwater Sensor Networks (수중 센서 네트워크를 위한 채널 특성기반의 협력 통신 기법)

  • Ji, Yong-Joo;Choi, Hak-Hui;Lee, Hye-Min;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • This paper presents a cooperative transmission scheme for underwater acoustic sensor networks to improve packet transmission rate and reduce energy consumption. Source node transmits duplicated information relayed by distributed antennas called a virtual antenna array. Destination node combines that information to reduce packet error rate. The suggested cooperative scheme enhances the reliability by providing high diversity gains through intermediate relay nodes to overcome the distinct characteristics of the underwater channel, such as high transmission loss, propagation delay, and ambient noises. It is suggested that the algorithm select destinations and potential relays from a set of neighboring nodes that utilize distance cost, the residual energy of each node and local measurement of the channel conditions into calculation. Simulation results show that the proposed scheme reduces average energy consumption, response time, and increases packet delivery ratio compared with the SPF(Shortest Path First) and non-cooperative scheme using OPNET Moduler.

Development of Inspection System for Transparent Pattern of the Electromagnetic Resonance Pen (전자펜 입력용 투명패턴 검사장치 개발)

  • Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.640-645
    • /
    • 2020
  • To produce an input device stably using the transparent electromagnetic pattern of an electromagnetic induction method, pattern inspection is required in advance in the production process. Various methods of inspecting the capacitive pattern for hand-touch have been proposed, but it is difficult to find the related technical data for the pattern inspection method of the transparent electromagnetic induction method. In this study, to develop an inspection system for a fused electromagnetic resonance pen sensor with a copper-etched metal mesh pattern, an inspection algorithm and method for measuring the antenna impedance inside the sensor was proposed by measuring only the exposed FPCB connector. The proposed method was configured as a control board consisting of a microprocessor that forms a loop between specific channels according to the command of a computer, a computer-controlled by the Windows program, an LCR meter measuring the impedance between specific channels, and transmitting the measurement results back to the computer. An evaluation of the proposed system and measurements of nine specimens showed that it could detect the defects of the sensor used in the actual product.

A Study on the Direction finding of Drones Using Apollonius Circle Technique (Apollonius Circle 기법을 활용한 드론 방향탐지 연구)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2018
  • This paper uses the Apollonius Circle technique to estimate the position of a target that generates a specific signal by using a drone, which is rapidly becoming a rapidly expanding industry. The existing direction finding method is performed through the vehicle on the ground or installed the antenna at a high position to detect the position of the target. However, the conventional direction finding method is difficult to configure the reception environment of the LOS signal, It is difficult. However, the direction finding using the drone is easy to construct and measure the LOS signal receiving environment using the drone flying at high altitude. In this study, we use the 3D 800MHz Path-Loss Model to reconstruct the signal by using the measurement data of the ground direction finding, reconstruct the signal by using the 3-D 800MHz Path-Loss Model, and use the Apollonius Circle method to estimate the position of the target. A simulation was performed to estimate the position of the target. Simulation was performed to determine the target position estimation performance by configuring the ground direction finding and the dron direction finding.