• Title/Summary/Keyword: antenna efficiency

Search Result 535, Processing Time 0.025 seconds

Characteristics of On-Board Broadband Antenna for 2.4 GHz Band (2.4 GHz 대역의 On-Board Broadband 안테나 특성)

  • Lee, Sang-Seok;Lee, Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • In this paper, to operate 2.4 GHz Inverted-L antenna with On-Board Broadband characteristics is proposed. The antenna was designed on the system board, the bandwidth by adjusting the reactance of the antenna that was formed common-mode and differential-mode on the antenna stubs has been improved. The system size is $80mm{\times}60mm$, the size of the antenna was limited to $30mm{\times}60mm$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. The experimental results, the bandwidth from 17.2 to 24.1 %, the gain is 3.01~4.71 dB, omni-directional radiation pattern characteristics were obtained. By a mobile terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

A study of 10GHz Slot Patch Antenna for Wireless Communication (무선 통신용 10GHz 대역 슬롯 패치 안테나 연구)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.599-604
    • /
    • 2021
  • In the information age, internet was developed from the wired access to the wireless Internet access. When a surge in demand for wireless Internet access, efficiency and performance of 2.4 and 5GHz band which leads to saturation of the communication was significantly fall. In this paper, we studied the design and fabrication of slot patch antenna to be used in wireless communication systems operating at around 10GHz band. To obtain optimal antenna parameters such as patch size, inter patch space, sL, sW, feed L, feed w, slot patch antenna was simulated by HFSS(High Frequency Structure Simulator). From these parameters, slot and patch antenna is fabricated using FR-4 substrate of dielectric constant 4.4. The characteristics of fabricated antenna were analyzed by network analyzer. The fabricated slot patch antenna showed a center frequency as 10.23GHz, the minimum return loss as -32dB, and -10dB bandwidth as 420MHz respectively.

Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface (후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.473-478
    • /
    • 2021
  • This paper designed a wideband, high gain planar trapezoidal monopole antenna using backside frequency selective surface (FSS) according to the need for wideband and high gain antenna required in various fields such as rapidly increasing wireless communication, autonomous vehicles, 5G wireless communication and wideband applications. The proposed antenna uses a dual metallic to have a structural difference from the existing FSS. By solving the complexity of the design antenna using genetic algorithms (GA) and high frequency structural simulators (HFSS) simulations, the proposed antenna is not only produce a high efficiency but also presents a wide bandwidth of 3.52 to 5.92 GHz and a gain of 10.5 dBi over the entire bandwidth, with the highest gain of 11.8 dBi at 5.1 GHz. It has been confirmed that the gain increased 8.6 dBi as the 36% impedance bandwidth of 1.8 GHz compared to the existing antenna improved to the 50% impedance bandwidth of 2.4 GHz.

A Design Study of Radomes for Airplanes and Missiles (항공기 및 미사일용 레이돔 설계에 관한 연구)

  • 나형기;박창현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.139-142
    • /
    • 1999
  • In this paper, a method of Radome design is considered. The shape is similar to tangent-ogive, and the antenna is a waveguide broad-wall slot array antenna. The characteristic of the Radome material is obtained by measuring test samples. By analyzing the transmission efficiency of the flat plate, Radome wall thickness is determined firstly. And then, the detailed characteristics of the Radome are analyzed by using GO-PO approximation technique. Several simple parameters of the designed Radome are tested and compared with the simulation results.

  • PDF

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

Glass Antenna Using Transparent IZTO/Ag/IZTO Multilayer Electrode (IZTO/Ag/IZTO 다층 투명전극을 이용한 안경용 웨어러블 안테나)

  • Hong, Seungman;Kim, Youngsung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.372-377
    • /
    • 2016
  • Communication flow is changing rapidly. Recently, a range of wearable devices such as wearable glasses and wearable watch, have been launched. These kinds of wearable devices help people to live a more comfortable life. Wearable devices most have an antenna for wireless communication. This paper reports a transparent antenna that is made of an optically transparent material for wearable glasses. Transparent antenna can be applied to smart windows and will not disturb the view of user. IZTO/Ag/IZTO multilayer electrode has higher electrical and optical properties. This antenna is available because of its good electrical properties. This study measured the performance of the proposed transparent antenna, which is made of a multilayer electrode, applied to a lens. The proposed antenna was simulated with several substrates. The antenna impedance was matched with length and width of the antenna. The antenna's conductivity and transparency was measured using a HMS-3000 and UV-spectrometer. A 40nm thick Ag single layer antenna was fabricated on a flexible polyimide substrate for comparing the antenna performances. The fabricated antenna is useable at a frequency of 2.4-2.5GHz, which is suitable for Wifi communications and has peak gain of 2.89dBi and an efficiency of 34%.

A Highly Efficient Rectenna Using Harmonic Rejection Capability

  • Kim, Youg-Hwan;Lim, Sung-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.257-261
    • /
    • 2011
  • A highly efficient 2.4 GHz rectenna is designed using a harmonic rejection bandpass filter. The rectenna is printed on Rogers Duroid 5880 substrate with ${\varepsilon}_r$=2.2 and a thickness of 1.6 mm. The rectenna consists of a microstrip antenna and high order harmonic rejection bandpass filter, microstrip lowpass filter, and Schottky barrier diode (HSMS2820). The use of a $2^{nd}$ and $3^{rd}$ harmonic rejection microstrip bandpass filter in the rectenna results in high conversion efficiency. The proposed rectenna achieves a RF to DC conversion efficiency of 72.17 % when the received RF power is 63.09 mW.

Electrical Characteristics of Helicon Wave plasmas (헬리콘 플라즈마의 전기적 특성)

  • 윤석민;김정형;서상훈;장흥영
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.85-92
    • /
    • 1996
  • The external electricla characteristics of helicon wave plasmas were measured over a wide range of RF power and magnetic filed. External parameters. such as antenna voltage , current, phase shift, and interanl parameter, electron density were measured at 7MHz, 1mTorr Ar discharge . The equivalent discharge resistance and reactance, and the power transfer efficiency were calculated through these measurements. There are a helicon mode which produces high density plasma by helicon wave and a lowmode which produces low density plasma by capaictive electric field. In case of the helicon mode, the anternna voltage and current were lower than those of the low-mode. The phase difference between voltage and current decreased suddenly at the transition point from the low-mode to the helicon mode. Equivalent resistance and power efficiency increased and reactance decreased suddenly at the transition point. These results mean that the power transperred to plasma and the nutual coupling between the antenna and plasma increase as the mode changes from the low-mode to the helicon mode.

  • PDF

A Printed, Wideband Folded Monopole Antenna Coupling with a Parasitic Inverted-L Element for Bluetooth, WiMAX and UWB Systems (Bluetooth, WiMAX, UWB 시스템용 역 L형 무급전 소자 결합 프린트형 광대역 폴디드 모노폴 안테나)

  • Kim, Ki-Baek;Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1101-1110
    • /
    • 2011
  • This paper presents a printed, wideband folded monopole antenna for laptop and tablet computer applications. The proposed antenna is designed to cover bandwidth(2.3~10.6 GHz) of Bluetooth, WiMAX, and UWB system by using the printed folded monopole antenna having asymmetrical line width coupling with a parasitic inverted- L element. Also, wireless LAN band(5.15~5.85 GHz) which interferes with UWB system is rejected by inserting half-wavelength open stub in the folded monopole antenna. -10 dB bandwidth of the fabricated wideband antenna is 2.27~10.6 GHz (4.7:1) and -10 dB band-rejected bandwidth is measured as 700 MHz(5.15~5.85 GHz, 12.72 %). The gain and efficiency of the antenna except for the rejected band are higher than 3.93 dBi and 91.89 % and are measured as -2 dBi and 14.65 % at 5.5 GHz which is band-rejected frequency. The size of the antenna is suitable to install for small space of tablet and laptop computers as 12.75(1 ${\lambda}$/10)${\times}$12(1 ${\lambda}$/11) $mm^2$(${\lambda}$ is free space wavelength at 2.3 GHz). Therefore, we verified that the designed antenna is appropriate for wideband antenna of tablet and laptop PC applications.

Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique (메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현)

  • An, Chan-Kyu;Yu, Ju-Bong;Jeon, Jun-Ho;Kim, Woo-Chan;Yang, Woon-Geun;Nah, Byung-Ku;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1343-1351
    • /
    • 2010
  • In this paper, a novel patch antenna based on the metamaterial CRLH(Composite Right- and Left-Handed) structure is designed, implemented, and measured. Contrary to the standard microstrip patch's fundamental resonance mode of half-wavelength or its positive multiple, the proposed antenna shows the in-phase electric field over the entire antenna. The proposed antenna has a desired omni-directional field pattern which is typical characteristic of $\lambda/4$ monopole antenna, and also shows the merit of low profile. HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) is used to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for the proposed antenna implementation. The implemented antenna showed VSWR (Voltage Standarding Wave Ratio)$\leq$2 for the frequency band from 2.63 GHz to 2.655 GHz which is used for S-DMB (Satellite-Digital Multimedia Broadcasting) service. And measured peak gain and efficiency are 2.65 dBi and 81.14 %, respectively.