• Title/Summary/Keyword: antenna correlation

Search Result 195, Processing Time 0.027 seconds

Design and Performance Evaluation of MIMO Antenna for Handheld Devices (휴대 단말형 MIMO 안테나 설계 및 성능 평가)

  • Moon, Hyo-Sang;Jun, Kye-Suk;Lee, Bom-Son
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1233-1241
    • /
    • 2008
  • We design, fabricate, and measure a MIMO antenna system mountable on a small PCB (such as UMPC). The proposed antenna system accommodates three radiation elements on the PCB area of $40mm\;{\times}\;100mm$. Two of them employ a slot type and one uses a modified monopole with an inverted L shape expecting high isolation and polarization purity. The bandwidth of each proposed MIMO antenna ranges from 80MHz and 200MHz at the center frequency of 1.8 GHz. The isolations between ports have been found to be greater than 10dB over the interested frequency band. Besides, the proposed MIMO system has been evaluated in terms of ARC(Active Reflection Coefficient, TARC(Total ARC), correlation, MEG, and etc. The envelope correlation is calculated to be much less than 0.04 and the ratio of the mean effective gain(MEG) between the antennas is found to be close to unity.

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

A Desired Signal Estimation using Sub-Array Algorithm of Adaptive Array Antenna in Correlation Channel Environment (상관성 채널 환경에서의 적응배열안테나의 부배열 알고리즘을 이용한 관심신호 추정)

  • Lee, Kwanhyeong;Cho, Taejun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.75-81
    • /
    • 2017
  • This paper estimate a desired signal in a correlation wireless communication. The transmitted signal is mixed with the information signal, interference, and noise in wireless channel, and it is incident on the receiver. In this paper, we apply MUSIC algorithm and sub-array method to recover the total rank of the correlation matrix in order to estimation a desired signal among receiving signals. Through simulation, we analyze to compare the proposed method with the classical MUSIC algorithm. As a result of the simulation, the proposed method improved the resolution about 10degrees compared to the conventional MUSIC algorithm. We prove the superiority of the proposed method for the desired signal estimation in correlation channel.

A Code Correlation Type RF Short Range Measurement System for High-Speed Mobile Targets (고속 이동체에 대한 전파형 코드상관방식 근거리 측정 시스템)

  • Lim, Tae-Wook;Lee, Seok-Woo;Jung, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2430-2432
    • /
    • 1998
  • Generally, in the best-known Pulse-type type and Frequency Modulated Continuous Wave(FM/CW)-type RF range measurement systems, the nearest measurable distance between antenna of system and targets is limited to several tens of meters. Moreover, in case of high-speed targets it is more difficult to measure the distance precisely. In this paper we design our own RF(X-band) range(up to 15 meters) measurement system usi code correlation for high- speed targets. It 0 the correlation value between transmitting receiving PN (Pseudo -Noise) codes. So we determine the distance between antenna of s and targets using this correlation value. We fabricated it using MIC techniques and experimental results show that the proposed syste fully qualified for a short range measurement syste

  • PDF

Hybrid Diversity-Beamforming Technique for Outage Probability Minimization in Spatially Correlated Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 2007
  • In this paper, we present a hybrid multi-antenna technique that can minimize the outage probability by combining the diversity and beamforming techniques. The hybrid technique clusters the transmission antennas into multiple groups and exploit diversity among different groups and beamforming within each group. We analyze the performance of the resulting hybrid technique for an arbitrary correlation among the transmission antennas. Through the performance analysis, we derive a closed-form expression of the outage probability for the hybrid technique. This enables to optimize the antenna grouping for the given spatial correlation. We show through numerical results that the hybrid technique can balance the trade-offs between diversity and beamforming according to the spatial correlation and that the optimally designed hybrid technique yields a much lower outage probability than the diversity or beamforming technique does in partially correlated fading channels.

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.

Wide and Dual-Band MIMO Antenna with Omnidirectional and Directional Radiation Patterns for Indoor Access Points

  • Yeom, Insu;Jung, Young Bae;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.20-30
    • /
    • 2019
  • A wide-band multiple-input multiple-output (MIMO) antenna with dual-band (2.4 and 5 GHz) operation is proposed for premium indoor access points (IAPs). Typically, an omni-directional pattern is used for dipole antennas and a directional radiation pattern is used for patch antennas. In this paper, both antenna types were used to compare their performance with that of the proposed $2{\times}2$ MIMO antenna. We simulated and measured the performance of the MIMO antenna, including the isolation, envelope correlation coefficient (ECC), mean effective gain (MEG) for the IAPs, and the throughput, in order to determine its communication quality. The performance of the antennas was analyzed according to the ECC and MEG. The proposed antenna has sufficient performance and excellent characteristics, making it suitable for IAPs. We analyzed the communication performance of wireless networks using the throughput data of a typical office environment. The network throughput of an 802.11n device was used for the comparison and was conducted according to the antenna type. The results showed that the values of the ECC, MEG, and the throughput have unique characteristics in terms of their directivity, antenna gains, isolation, etc. This paper also discusses the communication performance of various aspects of MIMO in multipath situations.

MIMO Channel Analysis Method using Ray-Tracing Propagation Model (전파예측모델을 이용한 MIMO 채널 분석 방법)

  • 오상훈;명로훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.759-764
    • /
    • 2004
  • This paper proposes a method that estimates MIMO channel characteristics analytically using a 3D ray tracing propagation model. We calculate the discrete spatial correlation between sub-channels by considering phase differences of paths, and using this, estimate the mean capacity upper bound of MIMO channel by Jensen's inequality. This analysis model is a deterministic model that do not approach stochastically through measurement nor approach statistically through Monte-Carlo simulations, so this model has high efficiency for time and cost. And based on the electromagnetic theory, this model may analyze quantitatively the parameters which can affect the channel capacity - antenna pattern, polarization mutual coupling, antenna structure and etc. This model may be used for the development of an optimal antenna structure for MIMO systems.

Miniature Staircase-Shaped Wideband MIMO Antenna with Excellent Isolation, Compliant to the SAR Standard (SAR규격을 만족하는 우수한 격리도의 소형 계단구조 광대역 MIMO 안테나)

  • Kahng, Kyungseok;Yang, In-Kyu;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1413-1420
    • /
    • 2013
  • This paper proposes a novel compact MIMO antenna which has miniaturized radiators and their row correlation coefficient, working for the LTE mobile communication, and its SAR is observed. Each of the proposed radiators has a shape of staircase and the bandwidth is twice larger than the conventional PIFA as 600MHz(21%) in 2.5 GHz - 3.15 GHz. And the area of the radiators is $16.5mm{\times}9.7mm$ proper for a handheld device. Also, by adding a planar mushroom decoupling structure between the radiators, the isolation is improved. The design has been carried out using the commercial full-wave time-domain EM solver and the finalized MIMO antenna has the return loss less than -10 dB in the LTE band, the isolation better than 20 dB and the efficiency more than 90% with the gain of 4.3 dB. Regarding the SAR of the antenna, it is observed that the average SAR value of 1g is estimated as 1.37W/Kg, which is lower than the SAR standard.

DS-CDMA System with Smart Antenna for Different Bandwidths over Rayleigh Fading Channel (레일리 페이딩 채널에서 DS-CDMA 시스템의 대역폭에 따른 스마트 안테나의 영향)

  • 배형오;김용성;류상진;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.193-196
    • /
    • 2000
  • In this paper, the performance of DS-CDMA system with smart antenna is analyzed for different bandwidths (1.25MHz, 5MHz) and different channel environments (rural, urban). For the analysis of smart antenna system, the vector channel model having the spatio-temporal correlation is needed. Hence, the channel is modeled as a time-variant linear filter in time, and each multipath is assumed as a reflective wave from only one direction (only one cluster) in space. A simulation is carried out by dividing several multipaths within one chip into each one and searching the strongest signal. DS-CDMA system with smart antenna using wider bandwidth present better performance than that using narrow bandwidth. It is shown that the smart antenna is more effective in urban area when using 2D-RAKE receiver.

  • PDF