• Title/Summary/Keyword: antagonistic strain

Search Result 230, Processing Time 0.023 seconds

Numerical Identification of Streptomyces fIaveus Producing Antibiotic Substances Inhibitory to Plant Pathogenic Fungi

  • Lee, Jung-Yeop;Kim, Beom-Seok;Hwang, Byung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.324-334
    • /
    • 1995
  • The actinomycete strain A 11 was antagonistic to plant pathogenic fungi Phytophthora capsid and Magnaporthe grisea. Based on the diaminopimelic acid (DAP) type and morphological characteristics examined by scanning electron microscopy, the strain A 11 was confirmed to belong to the genus Streptomyces. Based on Willcox probability and similarity level, the strain A 11 was numerically identified as Streptomyces flaveus using TAXON program of Ward and Goodfellow. Antibiotic production of S. flaveus strain A 11 was most favorable when cultured on glycerol yeast extract peptone (GYP) agar for 20 days at $28^{\circ}C$. The crude antibiotics from solid GYP agar cultures of the strain A 11 were most effective against Phytophthora capsici and Sclerotinia sclerotiorum among the fungi tested. Antifungal activity of the antibiotics against Alternaria solani, Botryosphaeria dothidea, Cercospora capsici, Magnaporthe grisea, and Rhizoctonia solani was somewhat high, whereas Colletotrichum gloeosporioides and Fusarium oxysporum f. sp. cucumerinum were rarely inhibited even at high concentrations.

  • PDF

Antifungal Activity and Exoenzyme Production of Several Bacteria Antagonistic to Trichoderma spp. Causing Green Mold Disease (버섯 푸른곰팡이균에 대한 길항세균의 항균활성과 세포외 분비효소 생성능)

  • Hyun, Soung-Hee;Min, Bong-Hee
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2002
  • Trichoderma spp. are the aggressive causal agents for green mold disease on oyster mushroom (Pleurotus spp.) cultivation. Antifungal bacteria (KATB 99121, KATB 99122 and KATB 99123 strains) were isolated from the compost for Pleurotus ostreatus. Among these bacterial strains, KATB 99121 strain showed an excellent inhibitory activity to the pathogens for green molds such as T. harzianum, T. viride and T. hamatum and an animal pathogen, Candida albicans, but did not affect on the culture of Pleurotus ostreatus (2209, Chunchu 2 and Wonhyung strains). KATB 99121 strain secreted amylolytic, proteolytic and cellulolytic exoenzymes. KATB 99122 and KATB 99123 strains excreted amylolytic, proteolytic, cellulolytic, lipolytic exoenzymes and showed ${\beta}$-glucosidase activity. Further studies will be conducted on the development of microbial fungicides using the antagonistic bacteria for the control of green mold disease on Pleurotus spp.

Selection of Antagonistic Bacteria for Biocontrol of Botrytis cinerea Causing Gray Mold on Vitis spp (포도 잿빛곰팡이병의 생물적 방제를 위한 길항세균 선발)

  • Seo, Sang-Tae;Park, Jong-Han;Han, Kyoung-Suk;Cheong, Seung-Ryong
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.267-271
    • /
    • 2006
  • Botrytis cinerea Pers. was found to be highly virulent to the grapevine plant, especially in greenhouse condition. Pseudomonas species play key roles for the biocontrol of many plant diseases especially in soil. Of the 83 isolates of Pseudomonas spp., a bacterial strain P84, isolated from tomato rhizosphere, was shown to suppress a wide range of phytopathogenic fungi in vitro. The isolate was identified as Pseudomonas putida on the basis of its bacteriological and genetic characteristics. The P. putida P84 strain carry the phlD gene for 2,4-diacetylphloroglucinol biosynthesis and may produce the antibiotics as an antagonistic mechanism involved in biocontrol. The antagonistic activity of the bacterium has a promising implication for its use as a biocontrol agent to control grapevine gray mold.

Isolation of Antifungal Bacterial Strain Bacillus sp. against Gray Mold infected in Kiwi Fruits and its Disease Control (참다래 잿빛곰팡이 병원균에 대한 길항균 Bacillus sp. 분리와 병해 억제 작용)

  • Cho, Jung-Il;Cho, Ja-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.399-410
    • /
    • 2006
  • This study was carried out to identity the effects of antifungal bacteria isolated from the soil grown kiwi fruit plants on the growth inhibition of Botrytis cinerea causing gray mold in kiwi fruit plants in the southern districts of Jeonnam. Two hundred and fifty antagonistic microorganisms were isolated and examined into the antifungal activity against Botrytis cinerea. We screened and isolated four bacterial strains which strongly inhibited Botrytis cinerea from the soil grown kiwi fruit plants. And the best antifungal bacterial strain which called CHO 163 was finally selected. Antagonistic microorganism CHO 163 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. CHO 163 showed 86.9% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. CHO 163 showed almost all of antagonistic activity against Botrytis cinerea. And we also confirmed that in vitro the treatment of Bacillus sp. CHO 163 cultured by SD+B+P broth efficiently controled the growth of Botrytis cinerea causing gray mold in kiwi fruit plants.

  • PDF

Suppression of Rhizoctonia spp. by Antagonistic Microorganisms and Their Compatibility with Fungicides (길항미생물에 의한 Rhizoctonia spp.의 억제 및 길항미생물의 농약 혼용시 생존율)

  • 이상재;심경구;김영권;허근영
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • 174 isolates of soil microorganisms were isolated from E-golf club from Apr.1997 through Oct. 1997. And 27 strains of them were selected through the inhihition test of mycelial growth. In the same period, soil-borne diesease pathogens, "Rhizoctonia", causing Large patch, Brown patch, Spring dead spot, and Yellow patch were isolated from the diseased areas in E-golf and S-golf club. The antagonistic activity of the strains against the pathogens was tested to select the excel-lent antagonists. In contact with the fungicides, the survivability of the antagonists was tested to assess the compatibility of the antagonists with the pesticides. The results were as follows: 1.Suppression of Rhizoctonia by Antagonists. Antagonistic activity of 27 strains against the pathogens was: tested in vitro. In the result, 3 isolates(B-7, B-15, B-41) of bacteria and 2 isolates(F-5, F-47) of fungi were superior to the rest. 2.Compatibility of the antagonists: with the fungicides: With 13 kinds of pesticides widely using Golf Club, Compatibility of 5 antagonists: were finally tested to select the strains: that mostly survived in contact with pesticides. In the results:, two of five strains: were selected : one strain was bacteria B-15, the other strain was fungi F-47. 24h after the mixing with pesticides:, these two strains were shown to survive at 90% level and these were identified as Bacillus and Trichoderma, respectively. And the most compatible pesticides: with the antagonists were shown to Polytoxin-D thirarn(s:urvivability 99.4%) and Validamycin-A (survivability 98.6%). Keywords:Antagonist, Large Patch, Trichoderma, Compatibility, Fungicide.Fungicide.

  • PDF

Mannitol Amendment as a Carbon Source in a Bean-based Formulation Enhances Biocontrol Efficacy of a 2,4-diacetylphloroglucinol-producing Pseudomonas sp. NJ134 Against Tomato Fusarium Wilt

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.390-395
    • /
    • 2011
  • Fusarium wilt caused by Fusarium oxysporum has become a serious problem world-wide and relies heavily on chemical fungicides. We selected Pseudomonas sp. NJ134 to develop an effective biocontrol strategy. This strain shows strong antagonistic activity against F. oxysporum. Biochemical analyses of ethyl-acetate extracts of NJ134 culture filtrates showed that 2,4-diacetylphloroglucinol (DAPG) was the major compound inhibiting in vitro growth of F. oxysporum. DAPG production was greatly enhanced in the NJ134 strain by adding mannitol to the growth media, and in vitro antagonistic activity against F. oxysporum increased. Bioformulations developed from growth of NJ134 in sterile bean media with mannitol as the carbon source under plastic bags resulted in effective biocontrol efficacy against Fusarium wilt. The efficacy of the bioformulated product depended on the carbon source and dose. Mannitol amendment in the bean-based formulation showed strong effective biocontrol against tomato Fusarium wilt through increased DAPG levels and a higher cell density compared to that in a glucose-amended formulation. These results suggest that this bioformulated product could be a new effective biocontrol system to control Fusarium wilt in the field.

Isolation and Characterization of a Butyric Acid Bacterium from Infant Feces (장내 항세균성 낙산균의 분리 및 특성)

  • 곽종휘;이정치;김태한;정필근;이금기
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.56-62
    • /
    • 1989
  • To find bacteria which can inhibit growth of enteropathogenic Clostridium perfringens ATCC 13124, spore forming butyric acid bacteria were isolated from 26 fecal samples of infants. Fourteen strains were found to be antagonistic to the enteropathogen and five of them produced butyric acid. A strain which produced the highest butyric acid was selected and identified as Clostridium butyricum. This organism sporulated in SM medium in 36 hours with optimum rates at 37$^{\circ}C$ and at pH 5.5. The spores tolerated well at high heat and acidity, and possible application of Clostridium butyricum as intestinal controller was discussed.

  • PDF

Antagonism against Helicobacter Pylori and Proteolysis of Lactobacillus Helveticus CU631 and Strain Identification

  • Yoon, Y.H.;Won, B.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.1057-1065
    • /
    • 2002
  • The antagonistic activities of 30 strains of lactobacilli against Helicobacter pylori were determined and Lactobacillus helveticus CU631 has been selected as the strain which possesses the strongest inhibitory effect in the disc diffusion assay showing inhibition zone diameter of $10{\pm}1.5mm$, whereas those of L. plantarum and L. fermentum have been shown to be $4.0{\pm}0.6mm$. H. pylori G88016 revealed the highest vacuolating toxin producing activity among the 8 strains, the inhibitory activity of L. helveticus CU631 in vacuolating toxin producing activity of H. pylori manifested in the co-culture of two strains and in the 5:5 mixture of supernatant of the two strains. Both L. helveticus CU631 and cell free culture supernatant had a strong inhibitory activities in urease and cytotoxin producing activities of H. pylori NCTC11637 and CJH12. An accelerated proteolytic activity of water soluble peptides by L. helveticus CU631 during the refrigeration storage has been manifested in the cream cheese. DNA seqences of 16S-23S ribosomal RNA spacer region showed typical pattern among the various strains of L. helveticus, which could be used in the identification of L. helveticus CU 631.

Screening and Isolation of Antagonistic Actinomyces #120 against the Kiwi Fruit Rot for the Environment-Friendly Culture of Kiwifruits (참다래의 친환경재배를 위한 과숙썩음병원균에 대한 길항성 방선균 #120의 선발 및 분리)

  • Cho, Jung-Il;Cho, Ja-Yong;Park, Yong-Seo;Son, Dong-Mo;Heo, Buk-Gu;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.252-257
    • /
    • 2007
  • This study was carried out to clarify the effects of antifungal Streptomyces sp. isolated from the soil grown kiwifruit on the growth inhibition of fruit rot (Botryosphaeria dothidea) infected in kiwi fruit plants in the southwestern districts of Jeonnam. Two hundred and fifty microorganisms were isolated and examined into the antifungal activity against Botryosphaeria dothidea. We screened and isolated six bacterial strains which have a strong inhibition against Botryosphaeria dothidea. And the best antifungal strain designated as the strain #120 showing 96.0% antifungal activity against Botryosphaeria dothidea was finally selected. The strain #120 was identified as Streptomyces sp. #120 based on its morphological, physiological, biochemical and chemotaxonomic characteristics.