• Title/Summary/Keyword: anomaly-based detection

Search Result 447, Processing Time 0.028 seconds

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

Intrusion Detection based on Clustering a Data Stream (데이터 스트림 클러스터링을 이용한 침임탐지)

  • Oh Sang-Hyun;Kang Jin-Suk;Byun Yung-Cheol
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.529-532
    • /
    • 2005
  • In anomaly intrusion detection, how to model the normal behavior of activities performed by a user is an important issue. To extract the normal behavior as a profile, conventional data mining techniques are widely applied to a finite audit data set. However, these approaches can only model the static behavior of a user in the audit data set This drawback can be overcome by viewing the continuous activities of a user as an audit data stream. This paper proposes a new clustering algorithm which continuously models a data stream. A set of features is used to represent the characteristics of an activity. For each feature, the clusters of feature values corresponding to activities observed so far in an audit data stream are identified by the proposed clustering algorithm for data streams. As a result, without maintaining any historical activity of a user physically, new activities of the user can be continuously reflected to the on-going result of clustering.

  • PDF

Exploring Flow Characteristics in IPv6: A Comparative Measurement Study with IPv4 for Traffic Monitoring

  • Li, Qiang;Qin, Tao;Guan, Xiaohong;Zheng, Qinghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1307-1323
    • /
    • 2014
  • With the exhaustion of global IPv4 addresses, IPv6 technologies have attracted increasing attentions, and have been deployed widely. Meanwhile, new applications running over IPv6 networks will change the traditional traffic characteristics obtained from IPv4 networks. Traditional models obtained from IPv4 cannot be used for IPv6 network monitoring directly and there is a need to investigate those changes. In this paper, we explore the flow features of IPv6 traffic and compare its difference with that of IPv4 traffic from flow level. Firstly, we analyze the differences of the general flow statistical characteristics and users' behavior between IPv4 and IPv6 networks. We find that there are more elephant flows in IPv6, which is critical for traffic engineering. Secondly, we find that there exist many one-way flows both in the IPv4 and IPv6 traffic, which are important information sources for abnormal behavior detection. Finally, in light of the challenges of analyzing massive data of large-scale network monitoring, we propose a group flow model which can greatly reduce the number of flows while capturing the primary traffic features, and perform a comparative measurement analysis of group users' behavior dynamic characteristics. We find there are less sharp changes caused by abnormity compared with IPv4, which shows there are less large-scale malicious activities in IPv6 currently. All the evaluation experiments are carried out based on the traffic traces collected from the Northwest Regional Center of CERNET (China Education and Research Network), and the results reveal the detailed flow characteristics of IPv6, which are useful for traffic management and anomaly detection in IPv6.

The Effectiveness Evaluation Methods of DDoS Attacks Countermeasures Techniques using Simulation (시뮬레이션을 이용한 DDoS공격 대응기술 효과성평가방법)

  • Kim, Ae-Chan;Lee, Dong-Hoon;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.17-24
    • /
    • 2012
  • This paper suggests Effectiveness Evaluation Methods of DDoS attacks countermeasures model by simulation. According to the security objectives that are suggested by NIST(National Institute of Standards and Technology), It represents a hierarchical Effectiveness Evaluation Model. we calculated the weights of factors that security objectives, security controls, performance indicator through AHP(Analytic Hierarchy Process) analysis. Subsequently, we implemented Arena Simulation Model for the calculation of function points at the performance indicator. The detection and protection algorithm involve methods of critical-level setting, signature and anomaly(statistic) based detection techniques for Network Layer 4, 7 attacks. Proposed Effectiveness Evaluation Model can be diversely used to evaluate effectiveness of countermeasures and techniques for new security threats each organization.

DCNN Optimization Using Multi-Resolution Image Fusion

  • Alshehri, Abdullah A.;Lutz, Adam;Ezekiel, Soundararajan;Pearlstein, Larry;Conlen, John
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4290-4309
    • /
    • 2020
  • In recent years, advancements in machine learning capabilities have allowed it to see widespread adoption for tasks such as object detection, image classification, and anomaly detection. However, despite their promise, a limitation lies in the fact that a network's performance quality is based on the data which it receives. A well-trained network will still have poor performance if the subsequent data supplied to it contains artifacts, out of focus regions, or other visual distortions. Under normal circumstances, images of the same scene captured from differing points of focus, angles, or modalities must be separately analysed by the network, despite possibly containing overlapping information such as in the case of images of the same scene captured from different angles, or irrelevant information such as images captured from infrared sensors which can capture thermal information well but not topographical details. This factor can potentially add significantly to the computational time and resources required to utilize the network without providing any additional benefit. In this study, we plan to explore using image fusion techniques to assemble multiple images of the same scene into a single image that retains the most salient key features of the individual source images while discarding overlapping or irrelevant data that does not provide any benefit to the network. Utilizing this image fusion step before inputting a dataset into the network, the number of images would be significantly reduced with the potential to improve the classification performance accuracy by enhancing images while discarding irrelevant and overlapping regions.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

Combining Radar and Rain Gauge Observations Utilizing Gaussian-Process-Based Regression and Support Vector Learning (가우시안 프로세스 기반 함수근사와 서포트 벡터 학습을 이용한 레이더 및 강우계 관측 데이터의 융합)

  • Yoo, Chul-Sang;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.297-305
    • /
    • 2008
  • Recently, kernel methods have attracted great interests in the areas of pattern classification, function approximation, and anomaly detection. The role of the kernel is particularly important in the methods such as SVM(support vector machine) and KPCA(kernel principal component analysis), for it can generalize the conventional linear machines to be capable of efficiently handling nonlinearities. This paper considers the problem of combining radar and rain gauge observations utilizing the regression approach based on the kernel-based gaussian process and support vector learning. The data-assimilation results of the considered methods are reported for the radar and rain gauge observations collected over the region covering parts of Gangwon, Kyungbuk, and Chungbuk provinces of Korea, along with performance comparison.

A Case Study on the Target Sampling Inspection for Improving Outgoing Quality (타겟 샘플링 검사를 통한 출하품질 향상에 관한 사례 연구)

  • Kim, Junse;Lee, Changki;Kim, Kyungnam;Kim, Changwoo;Song, Hyemi;Ahn, Seoungsu;Oh, Jaewon;Jo, Hyunsang;Han, Sangseop
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.421-431
    • /
    • 2021
  • Purpose: For improving outgoing quality, this study presents a novel sampling framework based on predictive analytics. Methods: The proposed framework is composed of three steps. The first step is the variable selection. The knowledge-based and data-driven approaches are employed to select important variables. The second step is the model learning. In this step, we consider the supervised classification methods, the anomaly detection methods, and the rule-based methods. The applying model is the third step. This step includes the all processes to be enabled on real-time prediction. Each prediction model classifies a product as a target sample or random sample. Thereafter intensive quality inspections are executed on the specified target samples. Results: The inspection data of three Samsung products (mobile, TV, refrigerator) are used to check functional defects in the product by utilizing the proposed method. The results demonstrate that using target sampling is more effective and efficient than random sampling. Conclusion: The results of this paper show that the proposed method can efficiently detect products that have the possibilities of user's defect in the lot. Additionally our study can guide practitioners on how to easily detect defective products using stratified sampling

Two-Phase Approach for Data Quality Management for Slope Stability Monitoring (경사면의 안정성 모니터링 데이터의 품질관리를 위한 2 단계 접근방안)

  • Junhyuk Choi;Yongjin Kim;Junhwi Cho;Woocheol Jeong;Songhee Suk;Song Choi;Yongseong Kim;Bongjun Ji
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • In order to monitor the stability of slopes, research on data-based slope failure prediction and early warning is increasing. However, most papers overlook the quality of data. Poor data quality can cause problems such as false alarms. Therefore, this paper proposes a two-step hybrid approach consisting of rules and machine learning models for quality control of data collected from slopes. The rule-based has the advantage of high accuracy and intuitive interpretation, and the machine learning model has the advantage of being able to derive patterns that cannot be explicitly expressed. The hybrid approach was able to take both of these advantages. Through a case study, the performance of using the two methods alone and the case of using the hybrid approach was compared, and the hybrid method was judged to have high performance. Therefore, it is judged that using a hybrid method is more appropriate than using the two methods alone for data quality control.