Journal of the Korea Society of Computer and Information
/
v.29
no.11
/
pp.107-112
/
2024
In this paper, we propose a method to detect abnormal power usage conditions in domestic franchise convenience stores, by detecting cases where the temperature of the refrigeration or freezer equipment operates outside the normal range and classifying detailed abnormal situations. Compared to normal data, abnormal data is very small, and the amount of data varies depending on the type of abnormality, leading to a data imbalance issue. The proposed method employs a hierarchical structure that combines a time series classification algorithm with kNN, addressing the data imbalance problem and enabling classification using relatively small amounts of data. In this paper, we conducted an experiment by independently constructing our own dataset to validate the proposed methodology.
Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
Smart Structures and Systems
/
v.31
no.5
/
pp.485-500
/
2023
Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.
Proceedings of the Korean Information Science Society Conference
/
1999.10c
/
pp.306-308
/
1999
사회분야 전반이 전산화되면서 전산시스템에 대한 효과적인 침입방지와 탐지가 중요한 문제로 대두되었다. 침입행위도 정상사용행위와 마찬가지로 전산시스템 서비스를 사용하므로 호출된 서비스의 순서로 나타난다. 본 논문에서는 정상사용행위에 대한 서비스 호출순서를 모델링 한 후 사용자의 사용패턴을 정상행위와 비교해서 비정상행위(anomaly)를 탐지하는 접근방식을 사용한다. 정상 행위 모델링에는 순서정보를 통계적으로 모델링하고 펴가하는데 널리 쓰이고 있는 HMM(Hidden Markov Model)을 사용하였다. Sun사의 BSM 모듈로 얻어진 3명 사용자의 사용로그에 대하여 본 시스템을 적용한 결과, 학습되지 않은 u2r 침입에 대해 2.95%의 false-positive 오류에서 100%의 탐지율을 보여주었다.
Proceedings of the Korean Information Science Society Conference
/
2006.06c
/
pp.313-315
/
2006
최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.
침입탐지 시스템은 전산시스템을 보호하는 대표적인 수단으로, 오용탐지와 비정상행위탐지 방법으로 나눌 수 있는데, 다양화되는 침입에 대응하기 위해 비정상행위 탐지기법이 활발히 연구되고 있다. 비 정상행위기반 침임탐지 시스템에서는 정상행위 구축 방법에 따라 다양한 침입탐지율과 오류율을 보인다. 본 논문에서는 비정상행위기반 침입탐지시스템을 구축하였는데, 사용되는 대표적인 기계학습 방법인 동등 매칭(Equality Matching), 다층 퍼셉트론(Multi-Layer Perceptron), 은닉마르코프 모델(Hidden Markov Model)을 구현하고 그 성능을 비교하여 보았다. 실험결과 다층 퍼셉트론과 은닉마르코프모델이 높은 침입 탐지율과 낮은 false-positive 오류율을 내어 정상행위로 사용되는 시스템감사 데이터에 대한 정보의 특성을 잘 반영하여 모델링한다는 것을 알 수 있었다.
네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.
기존에 카메라는 침입자를 탐지할 때 정확성이 부족하고 열화상카메라는 가격이 비싸고 열 측정이 되지 않는 상황일 경우 감시가 힘들다는 단점이 있다. 이러한 단점을 보완하기 위해 빛의 간섭 및 회절에 의한 무아레 현상을 이용하여 이상징후 탐지 및 활용방안을 제시하려한다. 지형의 높낮이 및 형상을 저장하고 침입자가 탐지되었을 경우 무아레 이미지를 기반으로 처음 설정했던 지형 데이터와 비교하여 외부인의 침입을 탐지한다. 미세한 움직임이나 변화에도 크게 이미지가 변하는 무아레 현상의 성질을 이용하여 이상징후를 탐지하는 것이다. 이상징후를 탐지 했을 경우 보안 담당관에게 알림을 전송하거나 경보를 울리는 이상징후 탐지 솔루션 및 활용방안을 제안한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.478-481
/
2002
본 논문에서는 생명체의 면역계에서 중요한 역할을 하는 세포독성 T세포의 생성과정의 하나인 긍정선택(positive selection)과 부정 선택(negative selection)을 모델링하여 침입에 의한 데이터 변경과 바이러스에 의한 데이터 감염 등을 탐지할 때 가장 중요한 요소인 변경 검사 알고리즘을 개발하였다. 제안한 알고리즘은 면역세포의 생성시 MHC 인식부를 형성해 주는 긍정 선택을 자기 인식 알고리즘으로 구현하여 컴퓨터에서 자기로 인식해야하는 파일이나 기능에 대해 MHC 인식부를 형성하고, 또한 항원 인식부를 형성하는 부정 선택을 이용해 변형 검지기(anomaly detector)를 구성한다. 따라서 제안한 알고리즘은 실제 면역세포와 마찬가지로 자신과 침입자 모두에 대한 인식기를 가지고 변경을 탐지하게 된다. 시뮬레이션을 통하여 자기파일의 일부가 변경되었을 때와 블록이 변경되었을 때에 대하여 두 가지 방법을 이용한 변경 검사 알고리즘의 특성과 유효성을 밝힌다.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.874-876
/
2003
전산 시스템에 대한 침입에 대응하기 위하여 시스템 호출 감사자료 척도를 사용하여 은닉 마르코프 모델(HMM)에 적용하는 비정상행위 기반 침입탐지 시스템에 대한 연구가 활발하다. 하지만, 이는 일정한 임계간 이하의 비정상행위만을 감지할 뿐, 어떠한 유형의 침입인지를 판별하지 못한다. 이에 Viterbi 알고리즘을 이용하여 상태 시퀀스를 분석하고, 공격 유형별 표준 상태시퀀스와의 유사성을 측정하여 유형을 판별할 수 있는데, 외부 혹은 내부 환경에 따라 상태 시퀀스가 항상 규칙적으로 추출될 수 없기 때문에, 단순 매칭으로 침입 유형을 판별하기가 어렵다. 본 논문에서는 이러한 문제를 해결하기 위하여 시퀀스의 변형을 효과적으로 고려하는 편집거리(Edit distance)를 이용하여 어떠한 유형의 침입이 발생하였는지를 판별하는 방법을 제안한다. 본 논문에서는 루트권한을 취득하기 위한 대표적인 침입유형으로 가장 널리 쓰이는 버퍼오버플로우 공격에 대해 실험하였는데, 그 결과 세부적인 침입 유형을 잘 판별할 수 있음을 확인하였다.
본 논문에서는 중요 프로세스(privileged process)의 시스템 호출 순서(system call sequence)를 이용한 침입탐지 시스템을 제안한다. 기존 연구의 정상행위 기반 침입탐지 시스템은 정상행위를 모델링하여 시스템을 구성하고, 이와 비교를 통해 프로세스의 이상(anomaly) 여부를 결정한다. 이러한 방법은 모델링되지 않은 미지의 행위에 대한 적절한 판단을 행할 수 없으므로, 높은 오류율(false-positive/negative)을 보인다. 본 논문에서는 현재까지 알려진 공격에서 공통적으로 나타나는 윈도우들을 수집하여 침입예상윈도우를 구축하고, 이를 기존의 침입탐지 시스템에 부가적으로 사용하여 효과적으로 오류율(false-positive/negative)을 낮출 수 있음을 보인다. 실험 결과 제안된 방법을 통한 침입탐지는 기존의 방법에 비해 공격 탐지율은 증가하고 정상행위에 대한 오류율은 감소하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.