• Title/Summary/Keyword: anomaly-based detection

Search Result 447, Processing Time 0.024 seconds

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

An Anomaly Detection Framework Based on ICA and Bayesian Classification for IaaS Platforms

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3865-3883
    • /
    • 2016
  • Infrastructure as a Service (IaaS) encapsulates computer hardware into a large amount of virtual and manageable instances mainly in the form of virtual machine (VM), and provides rental service for users. Currently, VM anomaly incidents occasionally occur, which leads to performance issues and even downtime. This paper aims at detecting anomalous VMs based on performance metrics data of VMs. Due to the dynamic nature and increasing scale of IaaS, detecting anomalous VMs from voluminous correlated and non-Gaussian monitored performance data is a challenging task. This paper designs an anomaly detection framework to solve this challenge. First, it collects 53 performance metrics to reflect the running state of each VM. The collected performance metrics are testified not to follow the Gaussian distribution. Then, it employs independent components analysis (ICA) instead of principal component analysis (PCA) to extract independent components from collected non-Gaussian performance metric data. For anomaly detection, it employs multi-class Bayesian classification to determine the current state of each VM. To evaluate the performance of the designed detection framework, four types of anomalies are separately or jointly injected into randomly selected VMs in a campus-wide testbed. The experimental results show that ICA-based detection mechanism outperforms PCA-based and LDA-based detection mechanisms in terms of sensitivity and specificity.

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

A Probabilistic Sampling Method for Efficient Flow-based Analysis

  • Jadidi, Zahra;Muthukkumarasamy, Vallipuram;Sithirasenan, Elankayer;Singh, Kalvinder
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.818-825
    • /
    • 2016
  • Network management and anomaly detection are challenges in high-speed networks due to the high volume of packets that has to be analysed. Flow-based analysis is a scalable method which reduces the high volume of network traffic by dividing it into flows. As sampling methods are extensively used in flow generators such as NetFlow, the impact of sampling on the performance of flow-based analysis needs to be investigated. Monitoring using sampled traffic is a well-studied research area, however, the impact of sampling on flow-based anomaly detection is a poorly researched area. This paper investigates flow sampling methods and shows that these methods have negative impact on flow-based anomaly detection. Therefore, we propose an efficient probabilistic flow sampling method that can preserve flow traffic distribution. The proposed sampling method takes into account two flow features: Destination IP address and octet. The destination IP addresses are sampled based on the number of received bytes. Our method provides efficient sampled traffic which has the required traffic features for both flow-based anomaly detection and monitoring. The proposed sampling method is evaluated using a number of generated flow-based datasets. The results show improvement in preserved malicious flows.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.

Network Anomaly Detection using Association Rule Mining in Network Packets (네트워크 패킷에 대한 연관 마이닝 기법을 적용한 네트워크 비정상 행위 탐지)

  • Oh, Sang-Hyun;Chang, Joong-Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.3
    • /
    • pp.22-29
    • /
    • 2009
  • In previous work, anomaly-based intrusion detection techniques have been widely used to effectively detect various intrusions into a computer. This is because the anomaly-based detection techniques can effectively handle previously unknown intrusion methods. However, most of the previous work assumed that the normal network connections are fixed. For this reason, a new network connection may be regarded as an anomalous event. This paper proposes a new anomaly detection method based on an association-mining algorithm. The proposed method is composed of two phases: intra-packet association mining and inter-packet association mining. The performances of the proposed method are comparatively verified with JAM, which is a conventional representative intrusion detection method.

Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload

  • Kakavand, Mohsen;Mustapha, Norwati;Mustapha, Aida;Abdullah, Mohd Taufik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3884-3910
    • /
    • 2016
  • Intrusion Detection System (IDS) in general considers a big amount of data that are highly redundant and irrelevant. This trait causes slow instruction, assessment procedures, high resource consumption and poor detection rate. Due to their expensive computational requirements during both training and detection, IDSs are mostly ineffective for real-time anomaly detection. This paper proposes a dimensionality reduction technique that is able to enhance the performance of IDSs up to constant time O(1) based on the Principle Component Analysis (PCA). Furthermore, the present study offers a feature selection approach for identifying major components in real time. The PCA algorithm transforms high-dimensional feature vectors into a low-dimensional feature space, which is used to determine the optimum volume of factors. The proposed approach was assessed using HTTP packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome demonstrated that our proposed anomaly detection achieved promising results with 97% detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection also achieved comparable performance in terms of computational complexity when compared to three state-of-the-art anomaly detection systems.

Power Plant Turbine Blade Anomaly Detection using Deep Neural Network-based Object Detection (깊은 신경망 기반 객체 검출을 이용한 발전 설비 터빈 블레이드 이상 탐지)

  • Yu, Jongmin;Lee, Jangwon;Oh, Hyeontaek;Park, Sang-Ki;Yang, Jinhong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • Due to the increase in the demand for anomaly detection according to the ageing of power generation facilities, the need for developing an anomaly detection method that can provide high-reliability turbine blade anomaly detection performance has been continuously raised. Additionally, the false detection results caused by a human error accelerates the increase of the need. In this paper, we propose an anomaly detection technique for turbine blades in power plants using deep neural networks. Experimental results prove that the proposed technique achieves stable anomaly detection performance while minimizing human factor intervention.

Tropospheric Anomaly Detection in Multi-Reference Stations Environment during Localized Atmospheric Conditions-(2) : Analytic Results of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.271-278
    • /
    • 2016
  • Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.

Design of Anomaly Detection System Based on Big Data in Internet of Things (빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계)

  • Na, Sung Il;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.377-383
    • /
    • 2018
  • Internet of Things (IoT) is producing various data as the smart environment comes. The IoT data collection is used as important data to judge systems's status. Therefore, it is important to monitor the anomaly state of the sensor in real-time and to detect anomaly data. However, it is necessary to convert the IoT data into a normalized data structure for anomaly detection because of the variety of data structures and protocols. Thus, we can expect a good quality effect such as accurate analysis data quality and service quality. In this paper, we propose an anomaly detection system based on big data from collected sensor data. The proposed system is applied to ensure anomaly detection and keep data quality. In addition, we applied the machine learning model of support vector machine using anomaly detection based on time-series data. As a result, machine learning using preprocessed data was able to accurately detect and predict anomaly.