• Title/Summary/Keyword: anodic oxide film

Search Result 175, Processing Time 0.021 seconds

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode (층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할)

  • Kang, Joonsup;Nam, Kyung-Mo;Hwang, Eui-Hyeong;Kwon, Young-Gil;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy (Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Young;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk;Lee, Eung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 1992
  • For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on $TiO_2$ and Ti by electrodeposition. Also $A1_2O_3$ and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(${\eta}$) was 0.98% for flame oxidized electrode($1200^{\circ}C$ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode($800^{\circ}C$ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The $In_2O_3$ coated $TiO_2$ exhibits 0.8% of photoelectrochemical efficiency but much higher value of ${\eta}$ was obtained with the Increase of applied blas voltage. However, $Al_2O_3$ or NiO coated $TiO_2$ shows much low value of ${\eta}$. The efficiency was dependent on the presence of the metallic interstitial compound $TiO_{0+x}$(x<0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.

  • PDF

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF