• 제목/요약/키워드: anodic oxidation.

검색결과 325건 처리시간 0.026초

금속의 양극산화처리 기술 (Anodic Oxidation Treatment Methods of Metals)

  • 문성모
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구) (Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation))

  • 고영신;한경석;이풍헌
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

양극 산화 임플란트 표면 구조에 대한 염산 테트라싸이클린의 영향 (Micromorphometric Influence of Anodic oxidation surface implant conditioned with tetracycline-HCI)

  • 임정택;정종혁;권영혁;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제37권4호
    • /
    • pp.767-777
    • /
    • 2007
  • The present study was performed to evaluate the effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Anodic oxidation surface were utilized. Implant surface was rubbed with 50mg/ml Tetracycline-HCI solution for ${\frac{1}{2}}min.$, 1min., $1{\frac{1}{2}}min.$, 2min., $2{\frac{1}{2}}min.$, and 3min. respectively in the test group. Then, specimens were processed for Ra Value test and scanning electron microscopic observation. The results of this study were as follows. 1. The anodic oxidation surface roughness tests don't show significant difference on conditioning with saline and Tetracycline-HCI. 2. The anodic oxidized surfaces showed the craterous structures. The surface conditioning with Tetracycline-HCI didn't influence on its micro-morphology. In conclusion, Anodic oxidation implant surface is stable to detoxificate with 50mg/ml Tetracycline-HCI of implant surface.

Redox Reaction on Polarization Curve Variations of Polymer with Enzymes

  • Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권3호
    • /
    • pp.165-171
    • /
    • 2000
  • Experiments were carried out to measure variations in the oxidation potential and current density using the polarization curves of polycarbonate. The results were then examined to identify the influences affecting the oxidation potential related to various conditions, such as temperature, pH, and oxydase(citrate and lipase). The lines representing the active anodic and cathodic dissolution shifted only slightly in the potential direction relative to temperature, pH, and the effect of the enzyme. The Tafel slope for the anodic and cathodic dissolution was determined such that the reversibility polarization was indicated as being effected by various conditions. The slope of the polarization curves describing the active-to-passive transition region shifted noticeably in their direction. Also, by varying the conditions, the optimum conditions for the most ready transform were identified, including temperature, pH, oxidation rate, and resistance of oxidation potential. The critical oxidation sensitivity(I(sub)r/I(sub)f) of the anodic current density peak and maximum passive current density was also determined, which is used in measuring the critical corrosion sensitivity of a polycarbonate.

  • PDF

양극산화에 의한 다공성 알루미나 막의 기체투과 특성 (Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation)

  • 함영민
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF

A STUDY ON COPPER DEPOSITION PROCESS DURING ANODIC OXIDATION OF ALUMINIUM ALLOY

  • Koh, I.S.;Han, S.H.;Shin, D.H.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.444-446
    • /
    • 1999
  • The structure and composition of anodic films, formed on 6063 commercial aluminium alloy at constant current density of $1.5A/^dm2$ with various superimposed cathodic current ratio, in the range 0~33%, in the 11% $H_2SO_4$ with various concentration of $CuSO_4{\cdot}5H_2O$, in the range 0~75 g/l, without cathodic current are generally porous-type and no sign of Cu co-deposition appearance, suggesting that cathodic current is an important factor in the Cu co-deposition. Comparison with the anodic film thickness measurement results obtained from anodic film formed by direct anodic current and anodic film formed by superimposed various portion of cathodic current, the portion of cathodic current of input current increases with decrease of anodic film thickness and increases with increase of concentration of $Cu_2S{\;}and{\;}Cu_2O$ in the anodic film.

  • PDF

유기 저항막을 이용한 원자힘 현미경 양극산화 패터닝 기술 (Anodic Oxidation Lithography via Atomic Force Microscope on Organic Resist Layers)

  • 김성경;이해원
    • 폴리머
    • /
    • 제30권3호
    • /
    • pp.187-195
    • /
    • 2006
  • 원자힘 현미경 양극산화 패터닝 기술에 관한 연구를 유기 저항막의 종류 및 그들의 특성을 토대로 다루었다. 본 연구실에서 수행한 자기조립막, 랑뮈어-블라짓막, 고분자막 위에서의 원자힘 현미경 양극산화 패터닝에 대한 연구결과를 중심으로, 유기 저항막 위에서의 원자힘 현미경 양극산화 패터닝 기술에 대한 이해를 돕고자 하였다. 현실적인 공정 속도에서 높은 종횡비의 패턴을 형성하기 위해 원자힘 현미경 양극산화 패터닝에 유기 저항막의 전기-기계적 특성, 젖음 특성, 에칭 저항 특성 등이 중요한 인자들임을 제안하였다.

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

양극 산화 (Anodic Oxidation)

  • 노해용
    • 기술사
    • /
    • 제33권6호
    • /
    • pp.16-23
    • /
    • 2000
  • Anodizing processes is the conversion of the aluminum surface to aluminum oxide while the part is the anode in an electrolytic cell. The object of the anodizing was increased corrosion resistant, paint adhesion and was provided unique, decorative colors. Many electrolytes, under different conditions, have been used for the anodic oxidation of alumminum and its alloys. This paper deals with the procedures used in the anodic oxidation of aluminum and its alloys, the nature and properties of the oxide films, their uses and anodizing equipment and process control.

  • PDF

Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation

  • Park, Hun;Kim, Ho-Gi;Choi, Won-Youl
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권3호
    • /
    • pp.112-115
    • /
    • 2010
  • This paper provides the properties of $TiO_2$ nanotube arrays which are fabricated by anodic oxidation of Ti metal. Highly ordered $TiO_2$ nanotube arrays could be obtained by anodic oxidation of Ti foil in $0.3\;wt{\cdot}%$ $NH_4F$ contained ethylene glycol solution at $30^{\circ}C$. The length, pore size, wall thickness, tube diameter etc. of $TiO_2$ nanotube arrays were analyzed by field emission scanning electron microscopy. Their crystal properties were studied by field emission transmission electron microscopy and X-ray photoelectron spectroscopy.