• 제목/요약/키워드: anode degradation

검색결과 117건 처리시간 0.025초

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

  • Kim, Young Jin;Lee, Hyun Mi;Lim, Hyung-Tae
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.483-488
    • /
    • 2016
  • Anode supported solid oxide fuel cells (SOFCs), consisting of Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode, were fabricated and constant current tested with direct internal reforming of methane (steam to carbon ratio ~ 2) as well as hydrogen fuel at $800^{\circ}C$. The cell, operated under direct internal reforming conditions, showed relatively rapid degradation (~ 1.6 % voltage drop) for 95 h; the cells with hydrogen fuel operated stably for 170 h. Power density and impedance spectra were also measured before and after the tests, and post-test analyses were conducted on the anode parts using SEM / EDS. The results indicate that the performance degradation of the cell operated with internal reforming can be attributed to carbon depositions on the anode, which increase the resistance against anode gas transport and deactivate the Ni catalyst. Thus, the present study shows that direct internal reforming SOFCs cannot be stably operated even under the condition of S/C ratio of ~ 2, probably due to non-uniform mixture (methane and steam) gas flow.

촉매성 산화물 전극을 이용한 페놀의 전기화학적 분해 (Electrochemical Degradation of Phenol Using Dimensionally Stable Anode)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.999-1007
    • /
    • 2013
  • Electrochemical degradation of phenol was evaluated at DSA (dimensionally stable anode), JP202 (Ru, 25%; Ir, 25%; other, 50%) electrode for being a treatment method in non-biodegradable organic compounds such as phenol. Experiments were conducted to examine the effects of applied current (1.0~4.0 A), electrolyte type (NaCl, KCl, $Na_2SO_4$, $H_2SO_4$) and concentration (0.5~3.0 g/L), initial phenol concentration (12.5~100.0 mg/L) on phenol degradation and $UV_{254}$ absorbance as indirect indicator of by-product degraded phenol. It was found that phenol concentration decreased from around 50 mg/L to zero after 10 min of electrolysis with 2.5 g/L NaCl as supporting electrolyte at the current of 3.5 A. Although phenol could be completely electrochemical degraded by JP202 anode, the degradation of phenol COD was required oxidation time over 60 min due to the generation of by-products. $UV_{254}$ absorbance can see the impact of as an indirect indicator of the creation and destruction of by-product. The initial removal rate of phenol is 5.63 times faster than the initial COD removal rate.

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes

  • Meena, Vinod Kumar;Ghatak, Himadri Roy
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.292-307
    • /
    • 2022
  • The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.

전계방출광원용 고효율 에노드 형광막 특성 연구(I) - 금속막 (Study on the High Efficiency of Anode Phosphor Electrode for Filed Emission Lamp (I) Metal Layer)

  • 이선희;김광복;김용원;유용찬
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2007
  • The electron charging and degradation of anode phosphor layers are showed major problems in high electric field with anode electrode of field emission devices. An Al metal layer on the phosphor layer may get rid of these problems. This Al metal layer are formed with the roughness of phosphor surface layer without interlayer and cannot be given rise to enhance the luminance efficiency. In order to enhance the brightness, an anode layer need to be flated between phosphor layer and Al metal layer in anode electrode. After optimizing the anode phosphor layer, an anode layer with Al metal and inter layer increased the brightness and luminescence efficiency 1.5 times more than only phosphor layer in anode.

  • PDF

전계방출광원용 아노드 난반사 연구 (Reporting on the High Efficiency of Anode Phosphor Electrode for Filed Emission Lamp - Metal Layer)

  • 윤한나;김윤일;김대준;김광복
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2008
  • The electron charging and degradation of anode phosphor layers are showed major problems in high electric field with anode electrode of field emission devices. An AI metal layer on the phosphor layer may get rid of these problems. This Hetero-metal-oxide phosphor layer are formed with the roughness of phosphor surface layer without interlayer and cannot be given rise to enhance the luminance efficiency. In order to enhance the brightness, an anode layer need to be flated between phosphor layer and AI metal layer in anode electrode. After optimizing the anode phosphor layer, an anode layer with AI metal and inter layer increased the brightness and luminescence efficiency 1.2 times more than only phosphor laver in anode.

  • PDF

Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis

  • Lim, Chae-Hyun;Lee, Ki-Tae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.243-247
    • /
    • 2014
  • Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{\circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.

열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성 (Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation)

  • 양수용;박재근;이태희;유정대;유영성;박진우
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

연료전지 자동차 내 수소 공급 시스템에서 드레인 밸브 특성에 따른 드레인 로직 최적화 및 연비와 운전안정성을 고려한 물 관리 전략 개발 (Optimization of Condensate Water Drain Logic Depending on the Characteristics of Drain Valve in FPS of Fuel Cell Vehicle and Development of Anode Water Management Strategy to Achieve High Fuel Efficiency and Operational Stability)

  • 안득균;이현재;심효섭;김대종
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.155-162
    • /
    • 2016
  • A proton exchange membrane fuel cell (PEMFC) produces only water at cathode by an electrochemical reaction between hydrogen and oxygen. The generated water is transported across the membrane from the cathode to the anode. The transported water collected in water-trap and drained to the cathode within the humidifier outlet. If the condensate water is not being drained at the appropriate time, condensate water in the anode can cause the performance degradation or fuel efficiency degradation of fuel cell by the anode flooding or unnecessary hydrogen discharge. In this study, we proposed an optimization method of condensate water drain logic for the water drain performance and the water drain algorithm as considered the condensate water generating speed prep emergency case. In conclusion, we developed the water management strategy of fuel processing system (FPS) as securing fuel efficiency and operating stability.

미생물연료전지에서 전극구조가 기질분해에 미치는 영향 연구 (Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells)

  • 신유진;이명은;박치훈;안용태
    • 대한환경공학회지
    • /
    • 제39권8호
    • /
    • pp.489-493
    • /
    • 2017
  • 미생물연료전지는 하폐수에 존재하는 다양한 유기성물질을 전기에너지로 변환시킬 수 있는 생물전기화학적공정이다. 본 연구에서는 전산모사를 통하여 산화전극의 크기, 전극간 거리, 전체 산화전극면적이 기질분해에 미치는 영향을 알아보고자 하였다. 생활하수를 처리하는 다중산화전극 및 SPA (Spaced electrode assembly)형 연속식 미생물연료전지공정을 모사하였으며, 전산모사결과에 따르면 단일전극의 크기에 의한 영향보다는 전극간 거리가 짧을수록 기질분해속도가 빠른 것으로 나타났다. 특히 전체 산화전극의 면적이 큰 경우가 기질분해가 가장 빠른 것으로 나타났다. 본 연구를 통하여 미생물연료전지공정의 설계에 있어서 율속단계로 알려진 환원전극의 크기 외에도 산화전극의 크기 및 전극간 거리 또한 기질분해 속도에 영향을 미칠 수 있는 중요한 인자임을 알 수 있었다.

Characteristics of Sr0.92Y0.08TiO3-δ Anode in Humidified MethaneFuel for Intermediate Temperature Solid Oxide Fuel Cells

  • Park, Eun Kyung;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2016
  • Sr0.92Y0.08TiO3-δ (SYT) was investigated as an alternative anode in humidified CH4 fuel for SOFCs at low temperatures (650 ℃-750 ℃) and compared with the conventional Ni/yttria-stabilized zirconia (Ni/YSZ) anode. The goal of the study was to directly use a hydrocarbon fuel in a SOFC without a reforming process. The cell performance of the SYT anode was relatively low compared with that of the Ni/YSZ anode because of the poor electrochemical catalytic activity of SYT. In the presence of CH4 fuel, however, the cell performance with the SYT anode decreased by 20%, in contrast to the 58% decrease in the case of the Ni/YSZ anode. The severe degradation of cell performance observed with the Ni/YSZ anode was caused by carbon deposition that resulted from methane thermal cracking. Carbon was much less detected in the SYT anode due to the catalytic oxidation. Otherwise, a significant amount of bulk carbon was detected in the Ni/YSZ anode.